Micro-level water-resources engineering—10: A bridge to end droughts?…

Let me ask you a simple question: Why are bridges at all necessary? I mean to refer to the bridges that get built on rivers. …Why do you at all have to build them?

Your possible answer might be this: Bridges are built on rivers primarily because there is water in the rivers, and the presence of the water body makes it impossible to continue driving across the river. Right? OK. Good.

In India, “kachchaa” (untarred) roads often exist on the sides of the main road or a high-way, as we approach a bridge on a river. These side-roads usually aren’t built after planning, but simply are a result of the tracks left by the bullock-carts plying through the fields, on both sides of the road. People from nearby villages often find such side roads very convenient for their purposes, including accessing the river. The sand-smugglers too find such approach-roads very convenient to their purposes. The same roads are also found convenient by journalists and NGO workers who wish to visit and photograph the same river-bed as it turns totally dry, for quite some time before summer even approaches.

Somewhere in there lies a certain contradiction—a technical contradiction, I should add.

If there were to be no water, ever, in these rivers, then no bridges would at all be necessary. Yet, these bridges are there. That’s because, in monsoon, it rains so much that these rivers begin to flow with full capacity; they even overflow and cause extensive flooding in the adjacent areas. So, naturally, bridges have to be built.

Yet, come even just late winter time, and the river-bed is already on its way to going completely dry. The bridge might as well not have been there.

Thus, the bridges, it would seem, are both necessary and not necessary in India. That’s the contradiction I was talking about.


But why not turn this entire situation to your advantage, and use the very site of a bridge for building a small check-dam?

After all, the very fact that there is a bridge means:

there is enough water flowing through that river, at least during monsoons. We only have to find a way to use it.


Here are some of the advantages of building check-dams nearby a bridge—or may be even directly underneath its span:

  • The patterns of water-flow across the pillars of the bridge, and even the pattern of flooding near the site of the bridge, has become well known, even if only because there is a better access to this site (as compared to other potential sites for a check-dam)—because of the existence of the main road.
  • There is already a built structure in place. This means that the nature of the rocks and of the soil at the site is already well studied. You don’t have to conduct costly geological surveys afresh; you only have to refer to the ready-made past reports.
  • Another implication of there being a pre-existing structure is this: The nearby land has already been acquired. There is no cost to be incurred in land acquisition, and the cost and other concerns in relocating the people.
  • Columns/pillars of the bridge already exist, and so, the cost of building the wall of a check-dam can come down at least a bit—especially if the wall is constructed right underneath the bridge.
  • Many times, there also is a lower-level cause-way, or an older and abandoned bridge lying nearby, which is no longer used. It can be dismantled so that the stones used in its construction can be recycled for building the wall of the check-dam. It’s another potential reduction in cost (including in the material transportation cost).
  • The existence of a bridge at a site can often mean that there is likely to be a significant population on either sides of the river—a population which had demanded that the bridge be built in the first place. Implication: If a water body comes to exist at this same site, then the water doesn’t have to be transported over long distances, because a definite demand would exist locally. Even if not, if the check-dam is equipped with gates, then the stored water can be supplied at distant locations downstream using the same river—you don’t have to build canals (starting from the acquisition of land for them, and further costs and concerns down the way).
  • Easy access to transportation would be good for side-businesses like fisheries, even for building recreational sites. (Think agro-tourism, boating, etc.)

Of course, there are certain important points of caution or concern, too. These must be considered in each individual case, on a case-to-case basis:

  • The local flow pattern would get adversely affected, which can prove to be dangerous for the bridge itself.
  • There is a likelihood of a greater flooding occurring in the nearby locations—esp. upstream! A blocked river swells easily, and does not drain as rapidly as it otherwise would—the causeway or the spillway can easily turn out to be too small, especially in the case of small dams or check-dams.
  • The height of the bridge itself may be good, but still, the river itself may turn out to be a little too shallow at a given location for a check-dam to become technically feasible, there. Given the importance of the evaporation losses, the site still may not turn out to be suitable for building a check-dam. (For evaporation losses, see my last post in this series [^].)

But overall, I think that the idea is attractive enough that it should be pursued very seriously, especially by students and faculty of engineering colleges.


We all know that there has been a great proliferation of engineering colleges all over the country. The growth is no longer limited to only big cities; many of them are situated in very rural areas too.

When a problem to be studied touches on the lives of people, say a student or two, it becomes easy for them to turn serious about it. Speaking from my own personal experience, I can say that BE project-reports from even relatively lower-quality engineering colleges have been surprisingly (unexpectedly) good, when two factors were present:

(i) When the project topic itself dealt with some issue which is close to the actual life of the students and the faculty, to their actual concerns.

For instance, consider the topic of studies of design of check-dams and farm-ponds, and their effectiveness.

During my stint as a professor, I have found that rural students consistently show (across batches) reporting of the actual data (i.e., not a copy-paste job).

In fact, even if they were not otherwise very bright academically, they did show unexpectedly better observation abilities. The observation tables in their reports would not fail to show the more rapidly falling water levels in check-dams. Invariably, they had backed the data in the tables with even photos of the almost dried up check-dams too.

Yes, the photos were often snapped unprofessionally—invariably, using their cell-phones. (Their parked bikes could be easily visible in the photos, but then, sometimes, also the Sun.) No, these rural students typically didn’t use the photo-quality glossy paper to take their printouts—which was very unlike the students from the big cities. The rural students typically had used only ordinary bond-paper even for taking color printouts of their photos (invariably using lower-resolution ink-jet printers).

But still, typically, the set of photos would unambiguously bring out the fact of multiple field visits they had made, per their teacher. The background shrubs showed seasonal variations, for instance; also the falling water levels, and the marks of the salt on the dam walls.

Invariably, the photos only corroborated—and not even once contradicted—the numbers or trends reported in their observation tables.

Gives me the hope that one relatively easy way to identify suitable bridges would be to rely on students like these.

(ii) The second factor (for good, reliable field studies) was: the presence of a teacher who guides the students right.

No, he doesn’t have to have a PhD, or even ME for that matter. But he has to know for himself, and pass on to his students, the value of the actual, direct and unadulterated observations, the value of pursuing a goal sincerely over a course of 6–8 months—and the fun one can have in doing that.


OK, a bit of a digression it all was. But the point to which I wanted to come, was academics, anyway.

I think academic institutions should take a lead in undertaking studies for feasibility of converting a bridge into a check-dam. Each academic team should pick up some actual location, and study it thoroughly from different viewpoints including (but not limited to):

  • CFD analysis for predicting the altered water-flow and flooding patterns (with the water flow possibly designed to occur over the main wall itself, i.e. without a side-weir), especially for a dam which is situated right under a bridge);
  • FEM analysis for strength and durability of the structures;
  • Total costs that will be incurred; total savings due to the site (near a bridge vs. far away from it at some location that is not easy to access); and overall cost–benefits analysis; etc.

The initiative for such studies could possibly begin from IITs or other premier engineering colleges, and then, via some research collaboration schemes, it could get spread over to other engineering colleges. Eventually, this kind of a research—a set of original studies—could come to take hold in the rural engineering colleges, too. … Hopefully.


Should the government agencies like PWD, Irrigation Dept., or “private,” American concerns like the Engineers India Limited, etc., get involved?

Here, I think that the above-mentioned academic teams certainly are going to benefit from interactions with certain select institutes like (speaking of Maharashtra) CDO Nasik, and CWPRS Pune.

However, when it comes PWD etc. proper, I do think that they operate rather in a direct project-execution mode, and not so much in a “speculative” research mode. Plus, their thinking still remains grooved in the older folds such as: either have multi-purpose large dams or have no dams at all!, etc.

But, yes, CWPRS Pune has simulation facilities (both with physical scale-models, and also via computational simulation methods), and CDO Nasik has not only design expertise but also data on all the bridges in the state. (CDO is the centralized design services organization that is responsible for engineering designs of all the dams, canals, bridges and similar structures built by the state government in Maharashtra.) The cooperation of these two organizations would therefore be important.


In the meanwhile, if you are not an engineering student or a faculty member, but still, if you are enthusiastic about this topic, then you can do one thing.

The next time you run into a site that fulfills the following criteria, go ahead, discuss it with people from the nearby villages, take a good set of snaps of the site from all sides, write a very small and informal description including the location details, and send it over by email to me. I will then see what best can be done to take it further. (The fact that there were so few engineering colleges in our times has one advantage: Many of the engineers today in responsible positions come from the COEP network.)

The absolutely essential criteria that your site should fulfill are the following two:

  1. The river gorge must be at least 25 feet deep at the candidate location.
  2. The under-side of the bridge-girder should itself be at least 35 feet above the ground or at a higher level (so that there is at least prima facie enough of a clearance for the flood water to safely pass through the bridge). But please note, this figure is purely my hunch, as of now. I may come back and revise this figure after discussing the matter with some researchers/IIT professors/experienced engineers. For visualization, remember: 10 feet means one storey, or the height of a passenger bus. Thus, the road should lie some 4 stories high from the river-bed. Only then can you overcome evaporation losses and also have enough clearance for flood water to safely pass through without doing any damage to the bridge or the dam.

Further, the preferred criteria (in site selection) would be these:

  1. The upstream of the site should not have too steep a gradient—else, the storage volume might turn out to be too small, or, severe flooding might occur upstream of the check-dam! For the same reason, avoid sites with water-falls nearby (within 1–2 km) upstream.
  2. The site should preferably be situated in a drought-prone region.
  3. Preferably, there should be an older, abandoned bridge of a much lower height (or a cause-way) parallel to a new bridge. Though not absolutely necessary I do include this factor in searches for the initial candidate locations, because it indirectly tells us that enough water flows through the river during the monsoons that the cause-way wouldn’t be enough (it would get submerged), and therefore, a proper bridge (which is tall enough) had to be built. This factor thus indirectly tells us that there is enough rainfall in the catchment area, so that the check-dam would sure get filled to its design capacity—that one wouldn’t have to do any detailed rainfall assessment for the catchment region and all.

So, if you can spot such a site, please do pursue it a bit further, and then, sure do drop me a line. I will at least look into what all can be done.


But, yes, in India, bridges do get built in the perennially drought-prone regions too. After all, when the monsoon arrives, there is flooding even in the drought-prone regions. It’s just that we haven’t applied enough engineering to convert the floods into useful volumes of stored water.

… For a pertinent example, see this YouTube video of a bridge getting washed away near Latur in the Marathwada region of Maharashtra, in September 2016 [^]. Yes, Latur is the same city where even drinking water had to be supplied using trains, starting from early April 2016 [^].

So, we supplied water by train to Latur in April 2016. But then, in September 2016 (i.e. the very next monsoon), their local rivers swelled so much, that an apparently well-built bridge got washed away in the floods. … Turns out that the caution I advised above, concerning simulating flooding, wasn’t out of place. …  But coming back to the drought-prone Latur, though I didn’t check it, I feel sure that come April 2017, and it was all back to a drought in Latur—once again. Fatigue!


PS: In fact, though this idea (of building check-dams near bridges) had occurred to me several years ago, I think I never wrote about it, primarily because I wasn’t sure whether it was practical enough to be deployed in relatively flatter region like Marathwada, where the drought is most acute, and suitable sites for dams, not so easy to come by. (See my earlier posts covering the Ujani and Jayakawadi dams.) However, as it so happened, I was somewhat surprised to find someone trying to advocate this idea within the government last year or so. … I vaguely remember the reports in the local Marathi newspapers in Pune, though I can’t off-hand give you the links.

On second thoughts, here are the links I found today, after googling for “check dams near bridges”. Here are a couple of the links this search throws up as of today: [^] and [^].

… Also, make sure to check the “images” tab produced by this Google search too. … As expected, the government agencies have been dumb enough to throw at least some money at at least a few shallow check-dams too (not good for storage due to evaporation losses) that were erected seemingly in the regions of hard rocks and all (generally, not so good for seepage and ground-water recharge either). As just one example, see here [^]. I am sure there are many, many other similar sites in many other states too. Government dumb-ness is government dumb-ness. It is not constrained by this government or that government. It is global in its reach—it’s even universal!

And that’s another reason why I insist on private initiative, and on involvement of local engineering college students and faculty members. They can be motivated when the matter is close to their concerns, their life, and so, with their involvement the results can turn out to be very beneficial. If nothing else, a project experience like this would help the students become better engineers—less wasteful ones. That too is such an enormous benefit that we could be even separately aiming for it. Here, it can come as a part of the same project.


Anyway, to close this post: Be on the lookout for good potential sites, and feel free to get in touch with me for further discussions on any technical aspects related to this issue. Take care, and bye for now…


A song I like:

(Hindi) “chori chori jab nazare mili…”
Lyrics: Rahat Indori
Music: Anu Malik
Singers: Kumar Sanu, Sanjeevani

[A song with a very fresh feel. Can’t believe it came from Anu Malik. (But, somehow, the usual plagiarism reporting sites don’t include this song! Is it really all that original? May be…)]

 

 

Micro-level water-resources engineering—9: Your enemy no. 1 is…

I am not sure how the elections affect the actual, on-the- ground activities related to the water conservation efforts, this year. However, the point I want to emphasize here is urgent—and it is technical in nature. It is also of very real consequences. I have made this same point several times over the past few years, but still find that, unfortunately, it still remains worth repeating even today. The point I want to remind you is the following:


Regardless of the scale of your water conservation project (whether farm-pond, small check-dam, big check-dam, KT weir, percolation tanks, dams, etc.), and regardless of whether it’s the building of a new structure or just the maintenance of an old one, remember that:

Evaporation loss is the least appreciated but also a most real factor that is actually operative in India.

Expect that depth-wise, water body that is about 8–10 feet deep will simply get evaporated away in a single year. There is nothing you can do about it. (So far, no suitable technology has ever been invented to cost-effectively counter or circumvent the evaporation losses.)

Also, realize that

A small pond (say 5 feet by 5 feet in area) and a large dam (say 1 km by 5 km in area) both lose the same height of water in the same time period.


For ease in visualization, remember, 10 feet is the height of a typical single storey building.

10 feet also is the height of a typical passenger bus.


Thus, if your farm-pond has water 20 feet deep when fully filled (say at the end of a monsoon), then expect that it will come to hold only about 8–10 feet deep water during the month of May next year—even if no one has taken even a single liter of water out of it, for any use whatsoever.

Further, realize that in any water-conservation structure, you are going to have some clearance in between the top level of the water-body and the top level of the dam-wall (or the pond-wall).

Thus, to have a water body that is at least 20 feet deep, you must have the top of the wall at a height of about 24–25 feet or more, when measured from the bottom of the water body. In contrast:

If the wall of your farm-pond or check-dam itself is only about 12 feet tall, then expect it to go absolutely completely dry during summer.

Don’t blame the failure of a shallow check-dam on any one. Most of all, don’t blame it on the vagaries of nature, don’t blame it on a lack of enough rain-fall “last year.” Blame it squarely on your own ignorance, your own poor design choices.

If your check-dam is not deep enough so as to fully overcome the evaporation loss, and further hold some additional useful depth of water, then it is by design going to be completely useless, absolutely non-functional. It is going to be a pure waste of money.


So, this year even if you are planning to undertake only the maintenance of older structures, drop from your list all those structures which won’t have at least 20 feet deep water body when fully filled (or 25 feet tall walls).

Remember, a penny saved is a penny earned. The same money can be used for building check-dams at better geographical sites, or even doing away with the whole idea of building check-dams (if no suitable site exists nearby a given village, as often happens in the Marathwada region of Maharashtra) and instead going in for just a set of farm-ponds—of sufficiently deep water bodies.

Just throwing money at schemes—whether by government agencies, or NGOs, or even by private parties—is not going to help, if you don’t pay attention to even simplest technical points like the minimum depth of water body.


Foreign authors don’t always adequately highlight this factor of the evaporation loss, because is not very significant in their climates. But it is, to us, in India.


Bottom-line:

If you are in water conservation, remember:

In India, your enemy no. 1 is not a lack of enough rain-fall. It is not even the uneven or non-uniform pattern of the rain-fall, though these certainly are a matter of concern. But they are not your enemy no. 1.

In water resources engineering in India, your enemy no. 1 is: the evaporation loss.

And realize, no feasible technological solution has ever been found to counter it.

All that you can do is to just build farm-ponds or check-dams that are deep enough—that’s all. … Having deep enough water bodies is the most intelligent way of going about it.


I wish all of you ample water supply at least during the next summer—if you spend money intelligently, this summer.

My two cents.


Addendum: My past blog-posts dealing with the topic of water resources may be found here: [^]. In general, the posts which appeared earlier in the series are more technically oriented; the posts that appeared later have been more in the nature of topical repetitions. The post with a high technical content—and also a simplest Python script to estimate evaporation losses—was this one [^]. Also see the next one in the series, here [^].


A late thought: A good project for ME/MTech in water resources engineering:

Given a geographical area (such as a state, region, district, or otherwise, a region defined via watershed areas), estimate the extent of floods that occur every monsoon. Then, estimate the potential amount of storage possible, and the amount actually realized. Be realistic for the second estimate—include seepage and evaporation losses, as well as cost considerations. Develop methodologies for making estimates of all kinds (flooding, seepage and groundwater storage, total on-surface storage potential, the potential that is realized). In the end, consider whether the following statement is defensible: So long as news of floods keep flooding in, we cannot say that the root-cause of water scarcity is the lack of sufficient rains, or uneven (in time) and non-uniform (in space) patterns of rainfall.

 

 

And to think…

Many of you must have watched the news headlines on TV this week; many might have gathered it from the ‘net.

Mumbai—and much of Maharashtra—has gone down under. Under water.

And to think that all this water is now going to go purely to waste, completely unused.

… And that, starting some time right from say February next year, we are once again going to yell desperately about water shortage, about how water-tankers have already begun plying on the “roads” near the drought-hit villages. … May be we will get generous and send not just 4-wheeler tankers but also an entire train to a drought-hit city or two…

Depressing!


OK. Here’s something less depressing. [H/t Jennifer Ouellette (@JenLucPiquant) ]:

“More than 2,000 years ago, people were able to create ice in the desert even with temperatures above freezing!” [^]

The write-up mentions a TED video by Prof. Aaswath Raman. Watched it out of idle interest, checked out his Web site, and found another TED video by him, here [^]. Raman cites statistics that blew me!

They spend “only” $24 billion on supermarket refrigeration (and other food-related cooling), but they already spend $42 billion on data-center cooling!!


But, any way, I did some further “research” and landed at a few links, like the Wiki on Yakhchal [^], on wind-catcher [^], etc.  Prof. Raman’s explanation in terms of the radiative cooling was straight-forwards, but I am not sure I understand the mechanism behind the use of a qanat [^] in Yakhchal/windcatcher cooling. It would be cool to do some CFD simulations though.


Finally, since I am once again out of a job (and out of all my saved money and in fact also into credit-card loans due to some health issue cropping up once again), I was just idly wondering about all this renewable energy business, when something struck me.


The one big downside of windmills is that the electricity they generate fluctuates too much. You can’t rely on it; the availability is neither 24X7 nor uniform. Studies in fact also show that in accommodating the more or less “random” output of windmills into the conventional grid, the price of electricity actually goes up—even if the cost of generation alone at the windmill tower may be lower. Further, battery technology has not improved to such a point that you could store the randomly generated electricity economically.

So, I thought, why not use that randomly fluctuating windmill electricity in just producing the hydrogen gas?

No, I didn’t let out a Eureka. Instead, I let out a Google search. After all, the hydrogen gas could be used in fuel-cells, right? Would the cost of packaging and transportation of hydrogen gas be too much? … A little searching later, I landed at this link: [^]. Ummm… No, no, no…. Why shoot it into the natural gas grid? Why not compress it into cylinders and transport by trains? How does the cost economics work out in that case? Any idea?


Addendum on the same day, but after about a couple of hours:

Yes, I did run into this link: “Hydrogen: Hope or Hype?” [^] (with all the links therein, and then, also this: [^]).

But before running into those links, even as my googling on “hydrogen fuel energy density” still was in progress, I thought of this idea…

Why at all transport the hydrogen fuel from the windmill farm site to elsewhere? Why not simply install a fuel cell electricity generator right at the windmill farm? That is to say, why not use the hydrogen fuel generated via electrolysis as a flywheel of sorts? Get the idea? You introduce a couple of steps in between the windmill’s electricity and the conventional grid. But you also take out the fluctuations, the bad score on the 24X7 availability. And, you don’t have to worry about the transportation costs either.

What do you think?


Addendum on 12th July 2018, 13:27 hrs IST

Further, I also browsed a few links that explore another,  solution: using compressed air: a press report [^], and a technical paper [^]. (PDF of the paper is available, but the paper would be accessible only to mechanical engineers though. Later Update: As to the press report, well, the company it talks about has already merged with another company, and has abandoned the above-ground storage of compressed air [^])

I think that such a design reduces the number of steps of energy conversions. However, that does not necessarily mean that the solution involving hydrogen fuel generation and utilization (both right at the wind-farm) isn’t going to be economical.

Economics determines (or at least must determine) the choice. Enough on this topic for now. Wish I had a student working with me; I could have then written a paper after studying the solution I have proposed above. (The idea is worth a patent too. Too bad I don’t have the money to file one. Depressing, once again!!)


OK. Enough for the time being. I may later on add the songs section if I feel like it. And, iterative modifications will always be done, but will be mostly limited to small editorial changes. Bye for now.

 

Micro-level water-resources engineering—8: Measure that water evaporation! Right now!!

It’s past the middle of May—the hottest time of the year in India.

The day-time is still lengthening. And it will continue doing so well up to the summer solstice in the late June, though once monsoon arrives some time in the first half of June, the solar flux in this part of the world would get reduced due to the cloud cover, and so, any further lengthening of the day would not matter.

In the place where I these days live, the day-time temperature easily goes up to 42–44 deg. C. This high a temperature is, that way, not at all unusual for most parts of Maharashtra; sometimes Pune, which is supposed to be a city of a pretty temperate climate (mainly because of the nearby Sahyaadris), also registers the max. temperatures in the early 40s. But what makes the region where I currently live worse than Pune are these two factors: (i) the minimum temperature too stays as high as 30–32 deg. C here whereas in Pune it could easily be falling to 27–26 deg. C even during May, and (ii) the fall of the temperatures at night-time proceeds very gradually here. On a hot day, it can easily be as high as 38 deg C. even after the sunset, and even 36–37 deg. C right by the time it’s the mid-night; the drop below 35 deg. C occurs only for the 3–4 hours in the early morning, between 4 to 7 AM. In comparison, Pune is way cooler. The max. temperatures Pune registers may be similar, but the evening- and the night-time temperatures fall down much more rapidly there.

There is a lesson for the media here. Media obsesses over the max. temperature (and its record, etc.). That’s because the journos mostly are BAs. (LOL!) But anyone who has studied physics and calculus knows that it’s the integral of temperature with respect to time that really matters, because it is this quantity which scales with the total thermal energy transferred to a body. So, the usual experience common people report is correct. Despite similar max. temperatures, this place is hotter, much hotter than Pune.


And, speaking of my own personal constitution, I can handle a cold weather way better than I can handle—if at all I can handle—a hot weather. [Yes, in short, I’ve been in a bad shape for the past month or more. Lethargic. Lackadaisical. Enervated. You get the idea.]


But why is it that the temperature does not matter as much as the thermal energy does?

Consider a body, say a cube of metal. Think of some hypothetical apparatus that keeps this body at the same cool temperature at all times, say, at 20 deg. C.  Here, choose the target temperature to be lower than the minimum temperature in the day. Assume that the atmospheric temperature at two different places varies between the same limits, say, 42 to 30 deg. C. Since the target temperature is lower than the minimum ambient temperature, you would have to take heat out of the cube at all times.

The question is, at which of the two places the apparatus has to work harder. To answer that question, you have to calculate the total thermal energy that has be drained out of the cube over a single day. To answer this second question, you would need the data of not just the lower and upper limits of the temperature but also how it varies with time between two limits.


The humidity too is lower here as compared to in Pune (and, of course, in Mumbai). So, it feels comparatively much more drier. It only adds to the real feel of a real hot weather.

One does not realize it, but the existence of a prolonged high temperature makes the atmosphere here imperceptibly slowly but also absolutely insurmountably, dehydrating.

Unlike in Mumbai, one does not notice much perspiration here, and that’s because the air is so dry that any perspiration that does occur also dries up very fast. Shirts getting drenched by perspiration is not a very common sight here. Overall, desiccating would be the right word to describe this kind of an air.

So, yes, it’s bad, but you can always take precautions. Make sure to drink a couple of glasses of cool water (better still, fresh lemonade) before you step out—whether you are thirsty or not. And take an onion with you when you go out; if you begin to feel too much of heat, you can always crush the onion with hand and apply the juice onto the top of your head. [Addendum: A colleague just informed me that it’s even better to actually cut the onion and keep its cut portion touching to your body, say inside your shirt. He has spent summers in eastern Maharashtra, where temperatures can reach 47 deg. C. … Oh well!]

Also, eat a lot more onions than you normally do.

And, once you return home, make sure not to drink water immediately. Wait for 5–10 minutes. Otherwise, the body goes into a shock, and the ensuing transient spikes in your biological metabolism can, at times, even trigger the sun-stroke—which can even be fatal. A simple precaution helps avoid it.

For the same reason, take care to sit down in the shade of a tree for a few minutes before you eat that slice of water-melon. Water-melon is nothing but more than 95% water, thrown with a little sugar, some fiber, and a good measure of minerals. All in all, good for your body because even if the perspiration is imperceptible in the hot and dry regions, it is still occurring, and with it, the body is being drained of the necessary electrolytes and minerals. … Lemonades and water-melons supply the electrolytes and the minerals. People do take care not to drink lemonade in the Sun, but they don’t always take the same precaution for water-melon. Yet, precisely because a water-melon has so much water, you should take care not to expose your body to a shock. [And, oh, BTW, just in case you didn’t know already, the doctor-recommended alternative to Electral powder is: your humble lemonade! Works exactly equivalently!!]


Also, the very low levels of humidity also imply that in places like this, the desert-cooler is effective, very effective. The city shops are full of them. Some of these air-coolers sport a very bare-bones design. Nothing fancy like the Symphony Diet cooler (which I did buy last year in Pune!). The air-coolers locally made here can be as simple as just an open tray at the bottom to hold the water, a cube made of a coarse wire-mesh which is padded with the khus/wood sheathings curtain, and a robust fan operating [[very] noisily]. But it works wonderfully. And these local-made air-coolers also are very inexpensive. You can get one for just Rs. 2,500 or 3,000. I mean the ones which have a capacity to keep at least 3–4 people cool.(Branded coolers like the one I bought in Pune—and it does work even in Pune—often go above Rs. 10,000. [I bought that cooler last year because I didn’t have a job, thanks to the Mechanical Engineering Professors in the Savitribai Phule Pune University.])


That way, I also try to think of the better things this kind of an air brings. How the table salt stays so smoothly flowing, how the instant coffee powder or Bournvita never turns into a glue, how an opened packet of potato chips stays so crisp for days, how washed clothes dry up in no time…

Which, incidentally, brings me to the topic of this post.


The middle—or the second half—of May also is the most ideal time to conduct evaporation experiments.

If you are looking for a summer project, here is one: to determine the evaporation rate in your locality.

Take a couple of transparent plastic jars of uniform cross section. The evaporation rate is not very highly sensitive to the cross-sectional area, but it does help to take a vessel or a jar of sizeable diameter.

Affix a mm scale on the outside of each jar, say using cello-tape. Fill the plastic jars to some level almost to the full.

Keep one jar out in the open (exposed to the Sun), and another one, inside your home, in the shade. For the jar kept outside, make sure that birds don’t come and drink the water, thereby messing up with your measurements. For this purpose, you may surround the jar with an enclosure having a coarse mesh. The mesh must be coarse; else it will reduce the solar flux. The “reduction in the solar flux” is just a fancy [mechanical [thermal] engineering] term for saying that the mesh, if too fine, might cast too significant a shadow.

Take measurements of the heights of the water daily at a fixed time of the day, say at 6:00 PM. Conduct the experiment for a week or 10 days.

Then, plot a graph of the daily water level vs. the time elapsed, for each jar.

Realize, the rate of evaporation is measured in terms of the fall in the height, and not in terms of the volume of water lost. That’s because once the exposed area is bigger than some limit, the evaporation rate (the loss in height) is more or less independent of the cross-sectional area.

Now figure out:

Does the evaporation rate stay the same every day? If there is any significant departure from a straight-line graph, how do you explain it? Was there a measurement error? Was there an unusually strong wind on a certain day? a cloud cover?

Repeat the experiment next winter (around the new year), and determine the rate of evaporation at that time.

Later on, also make some calculations. If you are building a check-dam or a farm-pond, how much would be the evaporation loss over the five months from January to May-end? Is the height of your water storage system enough to make it practically useful? economically viable?


A Song I Like:

(Hindi) “mausam aayegaa, jaayegaa, pyaar sadaa muskuraayegaa…”
Music: Manas Mukherjee
Singers: Manna Dey and Asha Bhosale
Lyrics: Vithalbhai Patel

Micro-level water-resources engineering—7: Dealing with the [upcoming] summer

Last monsoon, we’ve mostly had excess rain-fall in most parts of Maharashtra, even over India, taken as a whole.

Though the weather in Maharashtra still is, for the most part, pleasantly cool, the autumn season this year (in India) is about to get over, right this month.

Therefore, right now, i.e. right at the beginning of February, is the perfect time to empirically check the water levels in all those check-dams/farm-ponds you have. … That’s because, evaporation is going to happen at an accelerating pace from now on…

Between end-October (say Diwali) and March (say Holi), every solar year in India, the reduction in the levels of the stored water is dominated by the following two factors:
(i) seepage (i.e. the part which occurs after the rains cease), and
(ii) usage (i.e. the irrigation for the “rabbi” (i.e. the winter agricultural) season).

But from now on, the dominant factor is going to be the third one, namely, (iii) evaporation, and it is going to be increasingly ever more important throughout the upcoming summer, i.e., until the arrival of the next monsoon.

As I had earlier pointed out in this series  [^][^], in Maharashtra, the losses due to evaporation are expected to be about 5–8 feet (or 1 to 1.5 “puruSh”) deep.

Don’t take my word for it. … Go out and actually check it out. (Take snap-shots for your own record, if you wish.)

The beginning of February is also the perfect time to start executing on your plans for any maintenance- or new construction-activities on any check-dams/farm-ponds/residential water conservation that you might have thought of, in your mind. If you start executing on it now, you still have a very realistic framework of about 4–4.5 months left, before the next monsoon rains are slated to arrive [give or take about a half month here or there].

…Just a reminder, that’s all.


Keep in touch, best, and bye for now…


[As usual, I may come back and edit this post a bit after its publication, say, after a couple of days or so… I don’t know why, but things like that—viz., thinking about what I did happen to write, always happen to me. But the editing wouldn’t be too much. … OK. … Bye [really] for now.]

 

Micro-level water-resources engineering—6: Evaporation

As compared to the last year, public awareness about water resources has certainly increased this year. It has been a second drought-year straight in a row. None can miss it—the water issue—now. [Not even the breweries.]

There are several NGO initiatives involved in the awareness campaigns, as always. Even celebrities, now. Also politicians.

The heartening part this year is that there also is now a much greater participation of the common people.

Indeed, water conservation schemes are these days receiving quite a broad-based support, cutting across all political party-lines. People are actively getting into the building nallah-bunds, farm-ponds, and all. Good.

Good? … This is India, so how can anything be so straight-forwardly good?

With that question mark, I began taking a second look at this entire scene. It all occurred to me during a show that I saw on TV last week or so.

Well, that way, I don’t watch TV much. At least in India, TV has gone beyond being a stupor- or passivity-inducing device; it has become an active noise generator. So, the most I can put up with is only some channel-flipping, once in a while. [In my case it is typically limited to less than 15 minutes at a time, less than 7 times a week]. In one such episode [of flipping through the channels], I happened to catch a few minutes of a chat that some Marathi journos were having with Aamir Khan and Satyajit Bhatkal. [They should have been in awe of Bhatkal, but instead were, of Aamir Khan. [Journos.]]

Both Khan and Bhatkal were being all earnest and also trying to be all reasonable on that show, and in that vein, at one point, Bhatkal mentioned that there have been hundreds (or thousands) of KT-weirs, nallah-bunds and all, which have been implemented by the successive Maharashtra State governments. These are the structures or works which now have become defunct because of a lack of maintenance. Mentioning this point, he then added something like the following: [not his precise words, but as my casual impression of what he effectively was saying]:

For the best or the most optimum utilization of the available money, it would be better to begin with a revival or maintenance (like silt-removal/wall-repairs) of these thousands of the already existing structures, rather than building everything anew, because the latter would cost even more money.

Looks like quite sensible an approach to take, doesn’t it?

Well, yes, on the face of it. But not so, once you begin to think like an engineer about it. In fact, I do want to raise one flag here—one very big, red flag. [No, I am not a communist, just in case you have begun reading this blog only now.]

Let’s look at some hard facts—and also some simplest physical principles—first.


The only primary source of water is: the rainfall.

The two means of conserving water are: (i) surface storage, and (ii) ground-water recharge.

The two big [physical] enemies of water conservation are: (i) run-off and (ii) evaporation.

Run-off means: Rain-water running off the earth’s surface as floods (may be as flash-floods), without getting intercepted or stored anywhere. Evaporation means: the loss of the stored water due to ambient heat.

It’s good that people have gotten aware about the first part—the runoff factor. The by-now popular Marathi slogan: “paaNee aDavaa, paaNee jirawaa” [English: “block water, percolate water”] refers to this first factor. Unfortunately, it has come to refer to only the first factor.

People must also become fully aware about the second factor—namely, evaporation. It too is just as important in India, particularly in places like Maharashtra.

Evaporation is not always an acute concern in the cooler climates (think USA, Canada, Europe, Japan, Australia, New Zealand). But it is, in the hotter climates (think most of the third world). My focus is exclusively on India, mostly on Maharashtra. Since most of the advanced countries happen to lie in the cooler regions, and since in India we habitually borrow our engineering common-sense from the advanced countries rather than developing it individually here, I want to once again stress this point in this series.


As I mentioned in my last post in this series [^]:

“Evaporation is a really bad factor in hot climates like India. At the level of large-scale dams and even for check dams, there is precious little that can be done about it.”

There is a technological reason behind it: You can’t sprinkle some powder or so to cover the surface of a water body, and thereby arrest or slow down the evaporation losses, without also polluting water body in the process.

These days, you often see a layer of water hyacinth in dams/rivers. Thought the plant contiguously covers the water body, contrary to the naive expectation, it in fact accelerates evaporation. The plant sucks water from below and perspires it out via leaves. This rate of perspiration happens to be higher than that of the plain evaporation. Further, water hyacinth has big leaves. The total surface area of the leaves is many times greater than the area of the water body that the plant covers.

But, yes, the simple-minded idea is right, in a way. If instead of the water-sucking water-hyacinth, something else—something chemically inert and opaque—were to cover the water body, then it would cut down on the evaporation losses. People have tried finding such a material, but without success. Any suggested solutions are either not scalable, not economical, or both. That’s why, evaporation is a fact that we must simply learn to live with.


Let me continue quoting from my aforementioned post:

“Evaporation maps for Maharashtra show losses as high as 1.5 m to even 2.5 m per year. Thus, if you build a check-dam with a 3 m high wall, expect to lose more than half of the [stored] water to evaporation alone.

For the same reason of evaporation, most nallah-bunding and contour-trenching works [such as] those typically undertaken under the socialist programs like MNREGA don’t translate to anything at all for storage, or for that matter, even for seepage. Typically, the bunds are less than 1 m tall, and theoretically, water in them is expected to plain evaporate out right before December. Practically, that anyway is the observation! […] It is a waste of money and effort.”

That’s what I had said, about a year ago. It needs to be repeated.

Most people currently enthusiastic about water conservation simply don’t seem to have any appreciation as to how huge (and how hugely relevant) this factor of evaporation is. Hence this post.


To repeat: In Maharashtra, the range of evaporation losses is as high as 1.5–2.5 m. That is, about 5–8 feet, in terms of the height of water lost.

Thus, if you build or repair a nullah-bund that is about 10 feet tall (which is the typical height of a house), then you should expect to lose about 75% of the stored water to evaporation alone. Perhaps even 90% or more. After all, nullahs and rivers typically have a progressively smaller width as we go deeper, and so, the volume of the water body remaining at the bottom after evaporation is even smaller than what a simple height-based calculation tells you.

Coming back to the Khans and Bhatkals, and Patekars and Anaspures: If the small check-dam or Kolhapur-type of bund/weir you are repairing this summer is, say, 7–8 feet high, then what you should expect to see in the next March or April is: a dry river-bed with a few puddles of water perhaps still lingering here and there. Picture a stray dog trying to satisfy his thirst from a puddle that is relatively cleaner from among them, but with a vast patch of a darkish brown, rocky or parched land filling the rest of your visual field. In no case should you picture a large body of clean water extending a couple of kilometers or more upstream of the bund. The fallen rain-water would have got blocked by that bund, sure, but if your bund is only 7–8 feet tall, then all of it would have disappeared [literally] in the thin air through evaporation alone, by the time the summer arrives. [We are not even counting seepage here. And realize, not all seepage goes towards meaningful groundwater recharge. More on it, may be, later.]

Now, the fact of the matter is, many, many KT weirs and bunds, as built in Maharashtra, are hardly even 5–6 feet tall. (Some are as low as just 3–4 feet tall.) They are, thus, not even one (Marathi/Sanskrit word) “puruSh” deep. …

The next time you go for an outing, keep an eye for the bunds. For instance, if you are in Pune, take an excursion in the nearby Purandar taluka, and check out the series of the bunds built by the PWD/Irrigation department on the Neera river. Most of them are just 3–5 feet tall. None is as big as a “puruSh” tall. None ever shows any water left after December. [But don’t therefore go and talk to the PWD/Irrigation engineers about it. These engineers are smart. They will tell you that those are flood-control structures, not water-storage structures. You will thus come back non-plussed. You are warned.]

… In case you didn’t know what “puruSh” means: Well, it’s a traditionally used unit of depth/height in India. It is defined as the uppermost reach of a man when he stands upright and stretches his arms up. Thus, one “puruSh” is about 7–8 feet. Typically, in earlier times, the unit would be used for measuring the depth of a well. [During my childhood, I would often hear people using it. People in the rural areas still continue using it.]

So keep the following capsule in mind.

In most parts of Maharashtra, expect the evaporation losses to be about one “puruSh” deep.

If the water-body at a nallah-bund/check-dam/farm-pond is one “puruSh” deep during the monsoon, then expect its water body to completely dry up by the time the summer arrives the next year.

Therefore, an urgent word of advice:

If you are building farm-ponds or undertaking repairs of any bunds or KT weirs structures this year, then drop from your planning all those sites whose walls are not at least 2.0 “puruSh” tall. [If a wall is 2.0 purush tall, the water body will be about 1.5 purush deep.] Evaporation losses will make sure that your social-work/activity would be a complete waste of money. The successive governments—not just politicians but also social workers, planners, bureaucrats and engineers—have already wasted money on them. Let the wastage stop at least now. Focus from now on only on the viable sites—the sites where the depth of the water-body would be at least 12–15 feet or so.

If the nullah is not naturally deep, and if the local soil type is right, then you may think of deepening it (to a sufficient minimum depth), perhaps with machinery and all.

But in any case, keep the factor of evaporation in mind.


As pointed out in my earlier posts in this series, given the geological type of the top layers in most parts of Maharashtra, seepage is not a favorable option for water conservation planning.

The only exception is the patch that runs across Dhule, Jalgaon through Wardha, Nagpur. There, the top-layer is sufficiently sandy (as in Rajasthan.) Mr. Suresh Khanapurkar has done a lot of seepage-related work in this patch, and groundwater recharge indeed is a viable option there.

But remember: seepage is not viable for most of the remaining parts of Maharashtra (and in fact, it also is not, over very large patches of India). So, if your idea is to build shallower bunds with the expectation that it would help improve groundwater levels via seepage during and soon after monsoon (i.e., before evaporation kicks in the months following the monsoon), then that idea is not so much on the target, as far as Maharashtra is concerned. Engineering for seepage can be viable only if the local geology favors it.

For the general-purpose water conservation, in most parts of Maharashtra, we have to look for storage, not seepage. Therefore, evaporation becomes a more important factor. So, avoid all shallower sites.

In particular, when it comes to farm-ponds, don’t build the shallower ones even if government gives you subsidy for building them (including for the blue plastic sheet which they use in the farm-ponds to prevent the wasteful seepage). If your pond is shallow, it would once again be a waste of money, pure and simple. Evaporation would make sure of that.

That’s all for now, folks.


Yes, I have been repetitive. I don’t mind. I want to be repetitive, until the time that social workers and engineers begin to show a better understanding of the engineering issues involved in water conservation, esp. the factor of evaporation. Currently, an appreciation of this factor seems to be non-existent.


My blogging in the upcoming weeks will be sparser, because I have to re-write my CFD course notes and research related notes, simulation programs, etc. I lost them all during my last HDD crash. I want to complete that part first. So excuse me even if I don’t come back for some 3–4 weeks or more for now. I will try to post a brief note or two even if not a blog post, but no promises. [And, yes, I have now begun my weekly backups, and am strictly following the policy—the notifications from the operating system.]

Bye for now.


[May be one more editing pass, later today or tomorrow… Done.]

[E&OE]