“Blog” less; write journal papers!

“‘Blog’ less; write journal papers.”

That’s my NYR for 2018.

Allow me to explain.


My research is not experimental, neither is it connected with, say, design of a new machine or development of a new manufacturing process. The most concrete aspect my work involves only computational modeling. But that too is not of the kind which engineering researchers typically undertake. I don’t do FEM of this multi-physics problem or that. What I work on are some very fundamental issues of physics and engineering.

My research thus is decidedly theoretical, often bordering on being “speculative.” It tends to concentrate on fundamental aspects. For decades by now, I have been trying to tackle some of the trickiest, deepest or very abstract problems (e.g. foundations of QM). At other times, I have been busy just isolating something new as a problem in its right (e.g., instantaneous action-at-a-distance in diffusion, or non-uniqueness of solution to the diffusion equation, or the fundamentality of stress vis-a-vis strain, or mode transitions in ideal vibrations and their relation to vibrations in the real mechanical system, or the physical meaning of the delta of calculus of variations….).

OK, there are some simple experiments here and there I might do. But they are not a very significant aspect of my work. The experiments are more in the nature of illustrations (e.g. melting snowman). They are not even fully in the nature of quantitative validations, let alone the prime vehicles to discovery. So, they are just “potatoes” of my research. The meat is: deep theoretical issues themselves. That’s what it’s like when you say “fundamental.”

The only way in which you can formulate or tackle such problems—fundamental or foundational—is by being a bit “relaxed” about both the specifics of your topic and the way you go about tackling it.

If you believed too much in the existing theory, you wouldn’t be able to spot unidentified problems with it or find new solutions to the known ones. If you try to do theoretical research and if you still try to stick to a schedule like what they do in experimental research (say in designing and fabricating a gadget, complete with bill of materials, or in developing a process, complete with prototype 1, prototype 2, etc.), you wouldn’t able to even get off to a decent start. After all, a schedule can be made from only those ingredients that are already known to you, not of never seen possibilities or unknown ideas. And, while in experimental research, reality has a wonderful way to throw up new possibilities, you have no such luxury in theoretical research. Every “never seen” possibility has to be forged by your own mind. If you don’t think in a relaxed manner, you are never going to believe that the issue is easy enough for you to tackle it.

But one unintended consequence of it all is that, in theoretical research like mine, it’s easy (far too easy in fact) to get a bit too relaxed. It is easy to pursue too many diverse theoretical threads, and in examining them, to run around in circles and so keep on getting back to the same points again and again.

But now I have come to realize that perhaps time has come to stop pursuing new threads in my research and to consolidate what has already been learnt.

The best way I can think of for doing the latter is: writing papers.

In particular, I have to kick aside this one habit: writing things down only when and as “inspiration” strikes.

Writing thoughts down (maintaining pocket diaries) has done a world of good to me. But this long-pursued activity seems to have by now come, in my case, to the point of diminishing marginal utility.

In place of this habit (of keeping on idly brain-storming and noting down possibilities it throws up) I would now like to put in place another habit: writing things (papers, actually) down in a structured, routine, regular, day-to-day, and time-bound manner. Allow me to explain this part too.

Given the way I have pursued my research (and in fact, given even the very nature of problems I ended up tackling), it would have been impossible for me to say something like this:

“OK! January, diffusion paper! February, stress-strain paper! March and April, QM position paper!”

“… What, in February, I don’t write something on QM? neither on diffusion? How ridiculous?”

That is how I would have reacted. But not any more.

Instead, I am now going to be a bit “bureaucratic” about my research. (UGC and AICTE folks ought to be happy in discovering a new soul-mate in me!)

What I am going to do is what I indicated just minutes ago. I am going to make some kind of a “time-table”: this period, work (i.e. actually write papers about) only this particular problem. Leave aside all other issues. Just finish that particular paper. Only then move to those other, more interesting (even alluring) issues in a next delimited period specifically allocated for that. I will have to pursue this policy. And I had better.

After all, while “passively” letting myself jump from issues to issues has yielded a lot of new insights, there are any number of issues where I have “hit the plateau” by now—and I mean those words in a positive sense. By “hitting the plateau,” I mean not a loss of creativity or originality, but a sense, even a firm realization (based on logic) that a certain stage of completeness is already achieved.

And that’s why, I am going to concentrate on “professionally” writing papers, in the next year. Following some kind of a time-bound schedule. As if I were writing a report, or delivering a software product on its schedule. So, it’s high time I became a bit less “creative” and more “professional,” to put it vaguely.

Since I will not be pursuing this bit of this idea or that bit of that idea a lot, I will be blogging less. And since a lot of my research seems to have actually “hit the plateau” in the above-mentioned, positive sense, I would instead be writing papers.

Hence the “slogan”: “`Blog’ less, write journal papers!”

That’s my NYR for 2018…. though I wouldn’t wait for 2018 to arrive before getting going on it. After all, a new year is just an excuse to make resolutions. The digits in the date aren’t important. A definite, demarcated change (“quantum jump” if you will! [LOL!]) is. But a change of the last digit in the YYYY, since it comes only after as long a period as one complete year, is a good time to making the required definite change.

So, there. I will keep you posted, with very brief notes here and there, as to how this paper-writing “business” is actually progressing in my case. My immediate plan is to get going writing the diffusion papers, and to finish writing them, right in January 2018.

Let’s see how things actually progress.


A Song I Like:

This is that Marathi song which I said I had liked a lot during my childhood vacation (see my last 2–3 posts). I still like it. It is the one which has a decidedly Western touch, but without spoiling or compromising on the Indian sense of melody. …

(Marathi) “raajaa saarangaa, maajyaa saarangaa”
Music: Hridaynath Mangeshkar
Singer: Lata Mangeshkar
Lyrics: Shanta Shelke


Bye for now, make a time-table you can stick to, and also take care to execute on it. … Best wishes for a happy and prosperous new year!

Advertisements

Yes I know it!—Part 2

This post directly continues from my last post. The content here was meant to be an update to my last post, but it grew, and so, I am noting it down as a separate post in its own right.


Thought about it [I mean my last post] a lot last night and this morning. I think here is a plan of action I can propose:

I can deliver a smallish, informally conducted, and yet, “official” sort of a seminar/talk/guest lecture, preferably at an IIT/IISER/IISc/similar institute. No honorarium is expected; just arrange for my stay. (That too is not necessary if it will be IIT Bombay; I can then stay with my friend; he is a professor in an engineering department there.)

Once arranged by mutual convenience, I will prepare some lecture notes (mostly hand-written), and deliver the content. (I guess at this stage, I will not prepare Beamer slides, though I might include some audio-visual content such as simulations etc.)

Questions will be OK, even encouraged, but the format will be that of a typical engineering class-room lecture. Discussions would be perfectly OK, but only after I finish talking about the “syllabus” first.

The talk should preferably be attended also by a couple of PhD students or so (of physics/engineering physics/any really relevant discipline, whether it’s acknowledged as such by UGC/AICTE or not). They should separately take down their notes and show me these later. This will help me understand where and how I should modify my notes. I will then myself finalize my notes, perhaps a few days after the talk, and send these by email. At that stage, I wouldn’t mind posting the notes getting posted on the ‘net.

Guess I will think a bit more about it, and note about my willingness to deliver the talk also at iMechanica. The bottom-line is that I am serious about this whole thing.

A few anticipated questions and their answers (or clarifications):

  1. What I have right now is, I guess, sufficient to stake a claim. But I have not taken the research to sufficiently advanced stage that I can say that I have all the clarifications worked out. It’s far more than just a sketchy conceptual idea, and does have a lot of maths too, but it’s less than, say, a completely worked out (or series of) mathematical theory. (My own anticipation is that if I can do just a series of smaller but connected mathematical models/simulations, it should be enough as my personal contribution to this new approach.)
  2. No, as far as QM is concerned, the approach I took in my PhD time publications is not at all relevant. I have completely abandoned that track (I mean to say as far as QM is concerned).
  3. However, my PhD time research on the diffusion equation has been continuing, and I am happy to announce that it has by now reached such a certain stage of maturation/completion that I should be writing another paper(s) on it any time now. I am happy that something new has come out of some 10+ years of thought on that issue, after my PhD-time work. Guess I could now send the PhD time conference paper to a journal, and then cover the new developments in this line in continuation with that one.
  4. Coming back to QM: Any one else could have easily got to the answers I have. But no, to the best of my knowledge, none else actually has. However, it does seem to me now that time is becoming ripe, and not to stake a claim at least now could be tantamount to carelessness on my part.
  5. Yes, my studies of philosophy, especially Ayn Rand’s ITOE (and Peikoff’s explanations of that material in PO and UO) did help me a lot, but all that is in a more general sense. Let me put it this way: I don’t think that I would have had to know (or even plain be conversant with) ITOE to be able to formulate these new answers to the QM riddles. And certainly, ITOE wouldn’t at all be necessary to understand my answers; the general level of working epistemology still is sufficiently good in physics (and more so, in engineering) even today.  At the same time, let me tell you one thing: QM is very vast, general, fundamental, and abstract. I guess you would have to be a “philosophizing” sort of a guy. Only then could you find this continuous and long preoccupation with so many deep and varied abstractions, interesting enough. Only then could the foundations of QM interest you. Not otherwise.
  6. To formulate answers, my natural proclivity to have to keep on looking for “physical” processes/mechanisms/objects for every mathematical idea I encounter, did help. But you wouldn’t have to have the same proclivity, let alone share my broad convictions, to be able to understand my answers. In other words, you could be a mathematical Platonist, and yet very easily come to understand the nature of my answers (and perhaps even come to agree with my positions)!
  7. To arrange for my proposed seminar/talk is to agree to be counted as a witness (for any future issues related to priority). But that’s strictly in the usual, routine, day-to-day academic sense of the term. (To wit, see how people interact with each other at a journal club in a university, or, say, at iMechanica.)
  8. But, to arrange for my talk is not to be willing to certify or validate its content. Not at all.
  9. With that being said, since this is India, let me also state a relevant concern. Don’t call me over just to show me down or ridicule me either. (It doesn’t happen in seminar talks, but it does happen during job interviews in Pune. It did happen to me in my COEP interview. It got repeated, in a milder way, in other engineering colleges in SPPU (the Pune University). So I have no choice but to note this part separately.)
  10. Once again, the issue is best clarified by giving the example. Check out how people treated me at iMechanica. If you are at an IIT/IISc/similar institute/university and are willing to treat me similarly, then do think of calling me over.

More, may be later. I will sure note my willingness to deliver a seminar at an IIT (or at a good University department) or so, at iMechanica also, soon enough. But right now I don’t have the time, and have to rush out. So let me stop here. Bye for now, and take care… (I would add a few more tags to the post-categories later on.)

Is something like a re-discovery of the same thing by the same person possible?

Yes, we continue to remain very busy.


However, in spite of all that busy-ness, in whatever spare time I have [in the evenings, sometimes at nights, why, even on early mornings [which is quite unlike me, come to think of it!]], I cannot help but “think” in a bit “relaxed” [actually, abstract] manner [and by “thinking,” I mean: musing, surmising, etc.] about… about what else but: QM!

So, I’ve been doing that. Sort of like, relaxed distant wonderings about QM…

Idle musings like that are very helpful. But they also carry a certain danger: it is easy to begin to believe your own story, even if the story itself is not being borne by well-established equations (i.e. by physic-al evidence).

But keeping that part aside, and thus coming to the title question: Is it possible that the same person makes the same discovery twice?

It may be difficult to believe so, but I… I seemed to have managed to have pulled precisely such a trick.

Of course, the “discovery” in question is, relatively speaking, only a part of of the whole story, and not the whole story itself. Still, I do think that I had discovered a certain important part of a conclusion about QM a while ago, and then, later on, had completely forgotten about it, and then, in a slow, patient process, I seem now to have worked inch-by-inch to reach precisely the same old conclusion.

In short, I have re-discovered my own (unpublished) conclusion. The original discovery was may be in the first half of this calendar year. (I might have even made a hand-written note about it, I need to look up my hand-written notes.)


Now, about the conclusion itself. … I don’t know how to put it best, but I seem to have reached the conclusion that the postulates of quantum mechanics [^], say as stated by Dirac and von Neumann [^], have been conceptualized inconsistently.

Please note the issue and the statement I am making, carefully. As you know, more than 9 interpretations of QM [^][^][^] have been acknowledged right in the mainstream studies of QM [read: University courses] themselves. Yet, none of these interpretations, as far as I know, goes on to actually challenge the quantum mechanical formalism itself. They all do accept the postulates just as presented (say by Dirac and von Neumann, the two “mathematicians” among the physicists).

Coming to me, my positions: I, too, used to say exactly the same thing. I used to say that I agree with the quantum postulates themselves. My position was that the conceptual aspects of the theory—at least all of them— are missing, and so, these need to be supplied, and if the need be, these also need to be expanded.

But, as far as the postulates themselves go, mine used to be the same position as that in the mainstream.

Until this morning.

Then, this morning, I came to realize that I have “re-discovered,” (i.e. independently discovered for the second time), that I actually should not be buying into the quantum postulates just as stated; that I should be saying that there are theoretical/conceptual errors/misconceptions/misrepresentations woven-in right in the very process of formalization which produced these postulates.

Since I think that I should be saying so, consider that, with this blog post, I have said so.


Just one more thing: the above doesn’t mean that I don’t accept Schrodinger’s equation. I do. In fact, I now seem to embrace Schrodinger’s equation with even more enthusiasm than I have ever done before. I think it’s a very ingenious and a very beautiful equation.


A Song I Like:

(Hindi) “tum jo hue mere humsafar”
Music: O. P. Nayyar
Singers: Geeta Dutt and Mohammad Rafi
Lyrics: Majrooh Sultanpuri


Update on 2017.10.14 23:57 IST: Streamlined a bit, as usual.

 

A prediction. Also, a couple of wishes…

The Prediction:

While the week of the Nobel prizes always has a way to generate a sense of suspense, of excitement, and even of wonderment, as far as I am concerned, the one prize that does that in the real sense to me is, of course, the Physics Nobel. … Nothing compares to it. Chemistry can come close, but not always. [And, Mr. Nobel was a good guy; he instituted no prize for maths! [LOL!]]. …

The Physics Nobel is the King of all awards in all fields, as far as I am concerned.

That’s why, this year, I have this feeling of missing something. … The reason is, this year’s Physics Nobel is already “known”; it will go to Kip Thorne and pals.

[I will not eat crow even if they don’t get it. [… Unless, of course, you know a delicious recipe or two for the same, and also demonstrate it to me, complete with you sampling it first.]]

But yes, Kip Thorne richly deserves it, and he will get it. That’s the prediction. I wanted to slip it in even if only few hours before the announcement arrives.

I will update this post later right today/tonight, after the Physics Nobel is actually announced.


Now let me come to the couple of wishes, as mentioned in the title. I will try to be brief. [Have been too busy these days… OK. Will let you know. We are going in for accreditation, and so, it’s been all heavy documentation-related work for the past few months. Despite all that hard-work, we still have managed to slip a bit on the progress, and so, currently, we are working on all week-ends and on most public holidays, too. [Yes, we came to work yesterday.] So, it’s only somehow that I manage to find some time to slip in this post—which is written absolutely on the fly, with no second thoughts or re-reading before posting. … So excuse me if there is a bit of lack of balance in the presentation, and of course, typos etc.]


Wish # 1:

The first wish is that a Physics Nobel should go, in a combined way, to what actually are two separate, but very intimately related, and two most significant advances in the physical understanding of man: (i) chaos theory (including fractals) and (ii)catastrophe theory.

If you don’t like the idea of two ideas being given a single Nobel, then, well, let me put it this way: the Nobel should be given for achieving the most significant advancements in the field of the differential nonlinearities, for a very substantial progress in the physical understanding of the behaviour of nonlinear physical systems, forging pathways for predictive capacity.

Let me emphasize, this has been one of the most significant advances in physics in the last century. No, saying so is emphatically not a hyperbole.

And, yes, it’s an advance in physics, primarily, and then, also in maths—but only secondarily.

… It’s unfortunate that an advancement which has been this remarkable never did register as such with most of the S&T “manpower”, esp., engineers and practical designers. It’s also unfortunate that the twin advancement arrived on the scene at the time of bad cultural (even epistemological) trends, and so, the advancements got embedded in a fabric of hyperbole, even nonsense.

But regardless of the cultural tones in which the popular presentations of these advancements (esp. of the chaos theory) got couched, taken as a science, the studies of nonlinearity in the physical systems has been a very, very, original, and a very, very creative, advancement. It needs to be recognized as such.

That way, I don’t much care for what it helped produce on the maths side of it. But yes, even a not very extraordinarily talented undergraduate in CS (one with a special interest in deterministic methods in cryptography) would be able to tell you how much light got shone on their discipline because of the catastrophe and chaos theories.

The catastrophe theory has been simply marvellous in one crucial aspect: it actually pushed the boundaries of what is understood by the term: mathematics. The theory has been daring enough to propose, literally for the first time in the entire history of mankind, a well-refined qualitative approach to an infinity of quantitative processes taken as a group.

The distinction between the qualitative and the quantitative had kept philosophers (and laymen) pre-occupied for millenia. But the nonlinear theory has been the first theoretical approach that tells you how to spot and isolate the objective bases for distinguishing what we consider as the qualitative changes.

Remove the understanding given by the nonlinear theory—by the catastrophe-theoretical approach—and, once in the domain of the linear theory, the differences in kind immediately begin to appear as more or less completely arbitrary. There is no place in theory for them—the qualitative distinctions are external to the theory because a linear system always behaves exactly the same with any quantitative changes made, at any scale, to any of the controlling parameters. Since in the linear theory the qualitative changes are not produced from within the theory itself, such distinctions must be imported into it out of some considerations that are in principle external to the theory.

People often confuse such imports with “applications.” No, when it comes to the linear theory, it’s not the considerations of applications which can be said to be driving any divisions of qualitative changes. The qualitative distinctions are basically arbitrary in a linear theory. It is important to realize that that usual question: “Now where do we draw the line?” is basically absolutely superfluous once you are within the domain of the linear systems. There are no objective grounds on the basis of which such distinctions can be made.

Studies of the nonlinear phenomena sure do precede the catastrophe and the chaos theories. Even in the times before these two theories came on the scene, applied physicists would think of certain ideas such as differences of regimes, esp. in the areas like fluid dynamics.

But to understand the illuminating power of the nonlinear theory, just catch hold of an industrial CFD guy (or a good professor of fluid dynamics from a good university [not, you know, from SPPU or similar universities]), and ask him whether there can be any deeper theoretical significance to the procedure of the Buckingham Pi Theorem, to the necessity, in his art (or science) of having to use so many dimensionless numbers. (Every mechanical/allied engineering undergraduate has at least once in life cursed the sheer number of them.) The competent CFD guy (or the good professor) would easily be at a loss. Then, toss a good book on the Catastrophe Theory to him, leave him alone for a couple of weeks or may be a month, return, and raise the same question again. He now may or may not have a very good, “flowy” sort of a verbal answer ready for you. But one look at his face would tell you that it has now begun to reflect a qualitatively different depth of physical understanding even as he tries to tackle that question in his own way. That difference arises only because of the Catastrophe Theory.

As to the Chaos Theory (and I club the fractal theory right in it), more number of people are likely to know about it, and so, I don’t have to wax a lot (whether eloquently or incompetently). But let me tell you one thing.

Feigenbaum’s discovery of the universal constant remains, to my mind, one of the most ingenious advancements in the entire history of physics, even of science. Especially, given the experimental equipment with which he made that discovery—a handheld HP Calculator (not a computer) in the seventies (or may be in the sixties)! … And yes, getting to that universal constant was, if you ask me, an act of discovery, and not of invention. (Invention was very intimately involved in the process; but the overall act and the end-product was one of discovery.)

So, here is a wish that these fundamental studies of the nonlinear systems get their due—the recognition they so well deserve—in the form of a Physics Nobel.

…And, as always, the sooner the better!


Wish # 2:

The second wish I want to put up here is this: I wish there was some commercial/applied artist, well-conversant with the “art” of supplying illustrations for a physics book, who also was available for a long-term project I have in mind.

To share a bit: Years ago (actually, almost two decades ago, in 1998 to be precise), I had made a suggestion that novels by Ayn Rand be put in the form of comics. As far as I was concerned, the idea was novel (i.e. new). I didn’t know at that time that a comics-book version of The Fountainhead had already been conceived of by none other than Ayn Rand herself, and it, in fact, had also been executed. In short, there was a comics-book version of The Fountainhead. … These days, I gather, they are doing something similar for Atlas Shrugged.

If you think about it, my idea was not at all a leap of imagination. Newspapers (even those in India) have been carrying comic strips for decades (right since before my own childhood), and Amar Chitrakatha was coming of age just when I was. (It was founded in 1967 by Mr. Pai.)

Similarly, conceiving of a comics-like book for physics is not at all a very creative act of imagination. In fact, it is not even original. Everyone knows those books by that Japanese linguistics group, the books on topics like the Fourier theory.

So, no claim of originality here.

It’s just that for my new theory of QM, I find that the format of a comics-book would be most suitable. (And what the hell if physicists don’t take me seriously because I put it in this form first. Who cares what they think anyway!)

Indeed, I would even like to write/produce some comics books on maths topics, too. Topics like grads, divs, curls, tensors, etc., eventually. … Guess I will save that part for keeping me preoccupied during my retirement. BTW, my retirement is not all that far away; it’s going to be here pretty soon, right within just five years from now. (Do one thing: Check out what I was writing, say in 2012 on this blog.)

But the one thing I would like write/produce right in the more immediate future is: the comics book on QM, putting forth my new approach.

So, in the closing, here is a request. If you know some artist (or an engineer/physicist with fairly good sketching/computer-drawing skills), and has time at hand, and has the capacity to stay put in a sizeable project, and won’t ask money for it (a fair share in the royalty is a given—provided we manage to find a publisher first, that is), then please do bring this post to his notice.

 


A Song I Like:

And, finally, here is the Marathi song I had promised you the last time round. It’s a fusion of what to my mind is one of the best tunes Shrinivas Khale ever produced, and the best justice to the words and the tunes by the singer. Imagine any one else in her place, and you will immediately come to know what I mean. … Pushpa Pagdhare easily takes this song to the levels of the very best by the best, including Lata Mangeshkar. [Oh yes, BTW, congrats are due to the selection committe of this year’s Lata Mangeshkar award, for selecting Pushpa Pagdhare.]

(Marathi) “yeuni swapnaat maajhyaa…”
Singer: Pushpa Pagdhare
Music: Shrinivas Khale
Lyrics: Devakinandan Saraswat

[PS: Note: I am going to come back and add an update once this year’s Physics Nobel is announced. At that time (or tonight) I will also try to streamline this post.

Then, I will be gone off the blogging for yet another couple of weeks or so—unless it’s a small little “kutty” post of the “Blog-Filler” kind or two.]