Some suggested time-pass (including ideas for Python scripts involving vectors and tensors)

Actually, I am busy writing down some notes on scalars, vectors and tensors, which I will share once they are complete. No, nothing great or very systematic; these are just a few notings here and there taken down mainly for myself. More like a formulae cheat-sheet, but the topic is complicated enough that it was necessary that I have them in one place. Once ready, I will share them. (They may get distributed as extra material on my upcoming FDP (faculty development program) on CFD, too.)

While I remain busy in this activity, and thus stay away from blogging, you can do a few things:


1.

Think about it: You can always build a unique tensor field from any given vector field, say by taking its gradient. (Or, you can build yet another unique tensor field, by taking the Kronecker product of the vector field variable with itself. Or, yet another one by taking the Kronecker product with some other vector field, even just the position field!). And, of course, as you know, you can always build a unique vector field from any scalar field, say by taking its gradient.

So, you can write a Python script to load a B&W image file (or load a color .PNG/.BMP/even .JPEG, and convert it into a gray-scale image). You can then interpret the gray-scale intensities of the individual pixels as the local scalar field values existing at the centers of cells of a structured (squares) mesh, and numerically compute the corresponding gradient vector and tensor fields.

Alternatively, you can also interpret the RGB (or HSL/HSV) values of a color image as the x-, y-, and z-components of a vector field, and then proceed to calculate the corresponding gradient tensor field.

Write the output in XML format.


2.

Think about it: You can always build a unique vector field from a given tensor field, say by taking its divergence. Similarly, you can always build a unique scalar field from a vector field, say by taking its divergence.

So, you can write a Python script to load a color image, and interpret the RGB (or HSL/HSV) values now as the xx-, xy-, and yy-components of a symmetrical 2D tensor, and go on to write the code to produce the corresponding vector and scalar fields.


Yes, as my resume shows, I was going to write a paper on a simple, interactive, pedagogical, software tool called “ToyDNS” (from Toy + Displacements, Strains, Stresses). I had written an extended abstract, and it had even got accepted in a renowned international conference. However, at that time, I was in an industrial job, and didn’t get the time to write the software or the paper. Even later on, the matter kept slipping.

I now plan to surely take this up on priority, as soon as I am done with (i) the notes currently in progress, and immediately thereafter, (ii) my upcoming stress-definition paper (see my last couple of posts here and the related discussion at iMechanica).

Anyway, the ideas in the points 1. and 2. above were, originally, a part of my planned “ToyDNS” paper.


3.

You can induce a “zen-like” state in you, or if not that, then at least a “TV-watching” state (actually, something better than that), simply by pursuing this URL [^], and pouring in all your valuable hours into it. … Or who knows, you might also turn into a closet meteorologist, just like me. [And don’t tell anyone, but what they show here is actually a vector field.]


4.

You can listen to this song in the next section…. It’s one of those flowy things which have come to us from that great old Grand-Master, viz., SD Burman himself! … Other songs falling in this same sub-sub-genre include, “yeh kisine geet chheDaa,” and “ThanDi hawaaein,” both of which I have run before. So, now, you go enjoy yet another one of the same kind—and quality. …


A Song I Like:

[It’s impossible to figure out whose contribution is greater here: SD’s, Sahir’s, or Lata’s. So, this is one of those happy circumstances in which the order of the listing of the credits is purely incidental … Also recommended is the video of this song. Mona Singh (aka Kalpana Kartik (i.e. Dev Anand’s wife, for the new generation)) is sooooo magical here, simply because she is so… natural here…]

(Hindi) “phailee huyi hai sapanon ki baahen”
Music: S. D. Burman
Lyrics: Sahir
Singer: Lata Mangeshkar


But don’t forget to write those Python scripts….

Take care, and bye for now…

 

Advertisements

“Blog” less; write journal papers!

“‘Blog’ less; write journal papers.”

That’s my NYR for 2018.

Allow me to explain.


My research is not experimental, neither is it connected with, say, design of a new machine or development of a new manufacturing process. The most concrete aspect my work involves only computational modeling. But that too is not of the kind which engineering researchers typically undertake. I don’t do FEM of this multi-physics problem or that. What I work on are some very fundamental issues of physics and engineering.

My research thus is decidedly theoretical, often bordering on being “speculative.” It tends to concentrate on fundamental aspects. For decades by now, I have been trying to tackle some of the trickiest, deepest or very abstract problems (e.g. foundations of QM). At other times, I have been busy just isolating something new as a problem in its right (e.g., instantaneous action-at-a-distance in diffusion, or non-uniqueness of solution to the diffusion equation, or the fundamentality of stress vis-a-vis strain, or mode transitions in ideal vibrations and their relation to vibrations in the real mechanical system, or the physical meaning of the delta of calculus of variations….).

OK, there are some simple experiments here and there I might do. But they are not a very significant aspect of my work. The experiments are more in the nature of illustrations (e.g. melting snowman). They are not even fully in the nature of quantitative validations, let alone the prime vehicles to discovery. So, they are just “potatoes” of my research. The meat is: deep theoretical issues themselves. That’s what it’s like when you say “fundamental.”

The only way in which you can formulate or tackle such problems—fundamental or foundational—is by being a bit “relaxed” about both the specifics of your topic and the way you go about tackling it.

If you believed too much in the existing theory, you wouldn’t be able to spot unidentified problems with it or find new solutions to the known ones. If you try to do theoretical research and if you still try to stick to a schedule like what they do in experimental research (say in designing and fabricating a gadget, complete with bill of materials, or in developing a process, complete with prototype 1, prototype 2, etc.), you wouldn’t able to even get off to a decent start. After all, a schedule can be made from only those ingredients that are already known to you, not of never seen possibilities or unknown ideas. And, while in experimental research, reality has a wonderful way to throw up new possibilities, you have no such luxury in theoretical research. Every “never seen” possibility has to be forged by your own mind. If you don’t think in a relaxed manner, you are never going to believe that the issue is easy enough for you to tackle it.

But one unintended consequence of it all is that, in theoretical research like mine, it’s easy (far too easy in fact) to get a bit too relaxed. It is easy to pursue too many diverse theoretical threads, and in examining them, to run around in circles and so keep on getting back to the same points again and again.

But now I have come to realize that perhaps time has come to stop pursuing new threads in my research and to consolidate what has already been learnt.

The best way I can think of for doing the latter is: writing papers.

In particular, I have to kick aside this one habit: writing things down only when and as “inspiration” strikes.

Writing thoughts down (maintaining pocket diaries) has done a world of good to me. But this long-pursued activity seems to have by now come, in my case, to the point of diminishing marginal utility.

In place of this habit (of keeping on idly brain-storming and noting down possibilities it throws up) I would now like to put in place another habit: writing things (papers, actually) down in a structured, routine, regular, day-to-day, and time-bound manner. Allow me to explain this part too.

Given the way I have pursued my research (and in fact, given even the very nature of problems I ended up tackling), it would have been impossible for me to say something like this:

“OK! January, diffusion paper! February, stress-strain paper! March and April, QM position paper!”

“… What, in February, I don’t write something on QM? neither on diffusion? How ridiculous?”

That is how I would have reacted. But not any more.

Instead, I am now going to be a bit “bureaucratic” about my research. (UGC and AICTE folks ought to be happy in discovering a new soul-mate in me!)

What I am going to do is what I indicated just minutes ago. I am going to make some kind of a “time-table”: this period, work (i.e. actually write papers about) only this particular problem. Leave aside all other issues. Just finish that particular paper. Only then move to those other, more interesting (even alluring) issues in a next delimited period specifically allocated for that. I will have to pursue this policy. And I had better.

After all, while “passively” letting myself jump from issues to issues has yielded a lot of new insights, there are any number of issues where I have “hit the plateau” by now—and I mean those words in a positive sense. By “hitting the plateau,” I mean not a loss of creativity or originality, but a sense, even a firm realization (based on logic) that a certain stage of completeness is already achieved.

And that’s why, I am going to concentrate on “professionally” writing papers, in the next year. Following some kind of a time-bound schedule. As if I were writing a report, or delivering a software product on its schedule. So, it’s high time I became a bit less “creative” and more “professional,” to put it vaguely.

Since I will not be pursuing this bit of this idea or that bit of that idea a lot, I will be blogging less. And since a lot of my research seems to have actually “hit the plateau” in the above-mentioned, positive sense, I would instead be writing papers.

Hence the “slogan”: “`Blog’ less, write journal papers!”

That’s my NYR for 2018…. though I wouldn’t wait for 2018 to arrive before getting going on it. After all, a new year is just an excuse to make resolutions. The digits in the date aren’t important. A definite, demarcated change (“quantum jump” if you will! [LOL!]) is. But a change of the last digit in the YYYY, since it comes only after as long a period as one complete year, is a good time to making the required definite change.

So, there. I will keep you posted, with very brief notes here and there, as to how this paper-writing “business” is actually progressing in my case. My immediate plan is to get going writing the diffusion papers, and to finish writing them, right in January 2018.

Let’s see how things actually progress.


A Song I Like:

This is that Marathi song which I said I had liked a lot during my childhood vacation (see my last 2–3 posts). I still like it. It is the one which has a decidedly Western touch, but without spoiling or compromising on the Indian sense of melody. …

(Marathi) “raajaa saarangaa, maajyaa saarangaa”
Music: Hridaynath Mangeshkar
Singer: Lata Mangeshkar
Lyrics: Shanta Shelke


Bye for now, make a time-table you can stick to, and also take care to execute on it. … Best wishes for a happy and prosperous new year!

Yes I know it!—Part 2

This post directly continues from my last post. The content here was meant to be an update to my last post, but it grew, and so, I am noting it down as a separate post in its own right.


Thought about it [I mean my last post] a lot last night and this morning. I think here is a plan of action I can propose:

I can deliver a smallish, informally conducted, and yet, “official” sort of a seminar/talk/guest lecture, preferably at an IIT/IISER/IISc/similar institute. No honorarium is expected; just arrange for my stay. (That too is not necessary if it will be IIT Bombay; I can then stay with my friend; he is a professor in an engineering department there.)

Once arranged by mutual convenience, I will prepare some lecture notes (mostly hand-written), and deliver the content. (I guess at this stage, I will not prepare Beamer slides, though I might include some audio-visual content such as simulations etc.)

Questions will be OK, even encouraged, but the format will be that of a typical engineering class-room lecture. Discussions would be perfectly OK, but only after I finish talking about the “syllabus” first.

The talk should preferably be attended also by a couple of PhD students or so (of physics/engineering physics/any really relevant discipline, whether it’s acknowledged as such by UGC/AICTE or not). They should separately take down their notes and show me these later. This will help me understand where and how I should modify my notes. I will then myself finalize my notes, perhaps a few days after the talk, and send these by email. At that stage, I wouldn’t mind posting the notes getting posted on the ‘net.

Guess I will think a bit more about it, and note about my willingness to deliver the talk also at iMechanica. The bottom-line is that I am serious about this whole thing.

A few anticipated questions and their answers (or clarifications):

  1. What I have right now is, I guess, sufficient to stake a claim. But I have not taken the research to sufficiently advanced stage that I can say that I have all the clarifications worked out. It’s far more than just a sketchy conceptual idea, and does have a lot of maths too, but it’s less than, say, a completely worked out (or series of) mathematical theory. (My own anticipation is that if I can do just a series of smaller but connected mathematical models/simulations, it should be enough as my personal contribution to this new approach.)
  2. No, as far as QM is concerned, the approach I took in my PhD time publications is not at all relevant. I have completely abandoned that track (I mean to say as far as QM is concerned).
  3. However, my PhD time research on the diffusion equation has been continuing, and I am happy to announce that it has by now reached such a certain stage of maturation/completion that I should be writing another paper(s) on it any time now. I am happy that something new has come out of some 10+ years of thought on that issue, after my PhD-time work. Guess I could now send the PhD time conference paper to a journal, and then cover the new developments in this line in continuation with that one.
  4. Coming back to QM: Any one else could have easily got to the answers I have. But no, to the best of my knowledge, none else actually has. However, it does seem to me now that time is becoming ripe, and not to stake a claim at least now could be tantamount to carelessness on my part.
  5. Yes, my studies of philosophy, especially Ayn Rand’s ITOE (and Peikoff’s explanations of that material in PO and UO) did help me a lot, but all that is in a more general sense. Let me put it this way: I don’t think that I would have had to know (or even plain be conversant with) ITOE to be able to formulate these new answers to the QM riddles. And certainly, ITOE wouldn’t at all be necessary to understand my answers; the general level of working epistemology still is sufficiently good in physics (and more so, in engineering) even today.  At the same time, let me tell you one thing: QM is very vast, general, fundamental, and abstract. I guess you would have to be a “philosophizing” sort of a guy. Only then could you find this continuous and long preoccupation with so many deep and varied abstractions, interesting enough. Only then could the foundations of QM interest you. Not otherwise.
  6. To formulate answers, my natural proclivity to have to keep on looking for “physical” processes/mechanisms/objects for every mathematical idea I encounter, did help. But you wouldn’t have to have the same proclivity, let alone share my broad convictions, to be able to understand my answers. In other words, you could be a mathematical Platonist, and yet very easily come to understand the nature of my answers (and perhaps even come to agree with my positions)!
  7. To arrange for my proposed seminar/talk is to agree to be counted as a witness (for any future issues related to priority). But that’s strictly in the usual, routine, day-to-day academic sense of the term. (To wit, see how people interact with each other at a journal club in a university, or, say, at iMechanica.)
  8. But, to arrange for my talk is not to be willing to certify or validate its content. Not at all.
  9. With that being said, since this is India, let me also state a relevant concern. Don’t call me over just to show me down or ridicule me either. (It doesn’t happen in seminar talks, but it does happen during job interviews in Pune. It did happen to me in my COEP interview. It got repeated, in a milder way, in other engineering colleges in SPPU (the Pune University). So I have no choice but to note this part separately.)
  10. Once again, the issue is best clarified by giving the example. Check out how people treated me at iMechanica. If you are at an IIT/IISc/similar institute/university and are willing to treat me similarly, then do think of calling me over.

More, may be later. I will sure note my willingness to deliver a seminar at an IIT (or at a good University department) or so, at iMechanica also, soon enough. But right now I don’t have the time, and have to rush out. So let me stop here. Bye for now, and take care… (I would add a few more tags to the post-categories later on.)

Is something like a re-discovery of the same thing by the same person possible?

Yes, we continue to remain very busy.


However, in spite of all that busy-ness, in whatever spare time I have [in the evenings, sometimes at nights, why, even on early mornings [which is quite unlike me, come to think of it!]], I cannot help but “think” in a bit “relaxed” [actually, abstract] manner [and by “thinking,” I mean: musing, surmising, etc.] about… about what else but: QM!

So, I’ve been doing that. Sort of like, relaxed distant wonderings about QM…

Idle musings like that are very helpful. But they also carry a certain danger: it is easy to begin to believe your own story, even if the story itself is not being borne by well-established equations (i.e. by physic-al evidence).

But keeping that part aside, and thus coming to the title question: Is it possible that the same person makes the same discovery twice?

It may be difficult to believe so, but I… I seemed to have managed to have pulled precisely such a trick.

Of course, the “discovery” in question is, relatively speaking, only a part of of the whole story, and not the whole story itself. Still, I do think that I had discovered a certain important part of a conclusion about QM a while ago, and then, later on, had completely forgotten about it, and then, in a slow, patient process, I seem now to have worked inch-by-inch to reach precisely the same old conclusion.

In short, I have re-discovered my own (unpublished) conclusion. The original discovery was may be in the first half of this calendar year. (I might have even made a hand-written note about it, I need to look up my hand-written notes.)


Now, about the conclusion itself. … I don’t know how to put it best, but I seem to have reached the conclusion that the postulates of quantum mechanics [^], say as stated by Dirac and von Neumann [^], have been conceptualized inconsistently.

Please note the issue and the statement I am making, carefully. As you know, more than 9 interpretations of QM [^][^][^] have been acknowledged right in the mainstream studies of QM [read: University courses] themselves. Yet, none of these interpretations, as far as I know, goes on to actually challenge the quantum mechanical formalism itself. They all do accept the postulates just as presented (say by Dirac and von Neumann, the two “mathematicians” among the physicists).

Coming to me, my positions: I, too, used to say exactly the same thing. I used to say that I agree with the quantum postulates themselves. My position was that the conceptual aspects of the theory—at least all of them— are missing, and so, these need to be supplied, and if the need be, these also need to be expanded.

But, as far as the postulates themselves go, mine used to be the same position as that in the mainstream.

Until this morning.

Then, this morning, I came to realize that I have “re-discovered,” (i.e. independently discovered for the second time), that I actually should not be buying into the quantum postulates just as stated; that I should be saying that there are theoretical/conceptual errors/misconceptions/misrepresentations woven-in right in the very process of formalization which produced these postulates.

Since I think that I should be saying so, consider that, with this blog post, I have said so.


Just one more thing: the above doesn’t mean that I don’t accept Schrodinger’s equation. I do. In fact, I now seem to embrace Schrodinger’s equation with even more enthusiasm than I have ever done before. I think it’s a very ingenious and a very beautiful equation.


A Song I Like:

(Hindi) “tum jo hue mere humsafar”
Music: O. P. Nayyar
Singers: Geeta Dutt and Mohammad Rafi
Lyrics: Majrooh Sultanpuri


Update on 2017.10.14 23:57 IST: Streamlined a bit, as usual.