**0. Initial remarks:**

OK. It’s been a little while since I wrote my last post here.

Actually, it so happened that for a while after my last post I didn’t find anything well suited for writing a blog-post. I was also busy studying topics from Data Science. It’s true that during this time I did make a few comments at others’ blogs, but these were pretty context-specific. I couldn’t easily think of making a (more general-purpose) post out of them.

At the same time, some of the things that I read on QM—whether in pop-sci books or at others’ blogs—did prompt me to note a few comments. These were very brief points. They were better fitting only as tweets—as side-remarks made in the passing. So, I tweeted them. My twitter page is here [^].

… I now realize that quite a few of such tweets (on QM) have got accumulated. So it’s high time that these occasional notings got moved here too, together with some explanation to go with them. That’s precisely what I am going to do now, in this series of posts.

Most of these points (from the tweets) refer to my Outline document on QM which was posted at iMechanica about 6 months ago [^]. The tweets wouldn’t make any sense to someone if he hasn’t thoroughly gone through this document first. So, I do assume this context here.

In fact, most of these tweets are rather direct implications of what I had already noted in the Outline document. These points (from the tweets) were quite clear to me even back then, when I wrote the document.

However, while writing that document, my purpose was, first and foremost, to state the most salient building blocks and points of the theory and to focus on the overall way in which they connect together. Thus, what I wanted to give, via that document, was a definitive sense of the overall framework—hopefully in a logically complete manner. I was in fact worried a bit that some parts of these complex considerations might get slipped out of my mind once again as they had done in the past (before I wrote that document!) [In retrospect, I think that on this count, I did a pretty good job in the Outline document. I haven’t been able to think of a really essential part of the framework which I had in mind and which inadvertently got left out from it.]

Another reason I didn’t go into detailed implications right in that document was this: I also thought that anyone who knows the mainstream QM well, and also “gets” the logic given in my document well, would be able to very easily reach these further inferences completely on his own—for instance, my position on the wave-particle duality. So, I didn’t separately mention such points in that document even if I knew that points like these would be of much greater interest to the layman. The Outline, although very simple it looks, was definitely not written for the layman. (I tried to keep it as simple in exposition as possible, in part because I didn’t care to be seen as a respectable physicist anyway. All that I was concerned about was QM, and the new conceptual framework.)

So, all in all, it’s not an accident that I should be touching on many points like the wave-particle duality only later on, first via tweets! These really are only implications / consequences.

Anyway, here in this series we now go with these tweets of mine (made over the past month). While reproducing them here, I have expanded the short-forms or abbreviations, and also have added few additional bits of content too, just to get more streamlined sentences. Each tweet is then followed by some explanation, which very rapidly became very long—long enough that I couldn’t possibly compress all the QM-related material (tweets and my explanations of them) into a single post. So, I have no choice but to make a series of them!

**1. Schemes for nonlinear QM proposed by others:**

I tweeted on 12 July 2019 to this effect:

“Schrödinger eqn. revisited” by Schleich et al. [(.PDF) ^] . Yes, it presents a nonlinearity. But no, it doesn’t even consider the physical fact that all the potentials in reality come about only from superpositions of the singular potentials of individual electrons and protons. See my Outline document.”

Indeed, what I said here applies to each and every nonlinearity-based argument (except for mine!) which has ever been offered by way of attempting a resolution to the riddles of QM—in particular, the measurement problem.

To quote from Ian Stewart’s book: “Does God Play Dice? (2/e)”, several people have proposed nonlinear theories, including:

“L. Diosi, N. Gisin, G. C. Ghirardi, R. Grassi, P. Pearle, A. Rimini, and I. Percival.”

I had very briefly gone through some of these proposals. Actually, I had mostly got to know about their proposals by reading descriptions and remarks on them as made by other commentators. However, at times, I also went rapidly browsing through some of their arXiv papers. I had come to the conclusion that what they were putting forth wasn’t anything like my ideas (later mentioned in the Outline document). To quote Stewart here,

“In all of these theories the interaction of a quantum system with its environment produces an irreversible change that turns the quantum state into an eigenstate. However, all of these theories are probabilistic: the initial quantum state undergoes a kind of random diffusion which ultimately leads to an eigenstate.” (

ibid.)

To be honest, I am not sure whether all these proposals could be characterized as involving random *diffusion* or not. I don’t know these theories to the required level of detail to be able to confirm or deny Stewart’s characterization. However, there certainly is this element of an initial quantum state getting collapsed precisely to the measured eigenstate, which appears in *all* of them—and I don’t accept that idea in the first place (as explicitly put forth in my Outline document).

In a slightly different context, Stewart also notes:

“There is some interest among physicists in what they call `quantum chaos’, but quantum chaos is about the relation between non-chaotic quantum systems and chaotic classical approximations—not chaos as a mechanism for quantum indeterminacy.” (

ibid.)

OK, this is one conclusion which I very distinctly remember I had reached on my own too. I guess this was in November 2018, when I had googled on “quantum chaos.” Subsequently, I re-checked the matter again (just to be sure) in February ’19 (i.e., just days *after* posting my Outline document.)

I agree that Stewart’s characterization is right on the target here. IMHO, you don’t need to take recourse to the prior studies of “quantam chaos” very seriously if either the QM foundations or the very feasibility of the quantum computer are your concerns.

**2. A bit on my PhD-time research:
**

I made a series of 4 tweets on 18 July 2019. The first two of these dealt with my old, PhD time approach to photon propagation. Let me note here a clarification regarding what all *other* work I had performed during my PhD, before coming to my old (PhD-time) approach to QM (which I will address in the next section).

The first thing to note is that my work on QM had formed only a part (may be about 1/4th part or so) of whatever studies and research I had done during my PhD.

The other parts of my PhD thesis were notably related to the studies of the classical second-order partial-differential equations, and their computational modeling using stochastic processes. The equations on which I thus focused my attention were: the Helmholtz equation, the diffusion equation, and the Poisson-Laplace equation. In addition, I had also picked up a study of elasticity, and had added a conjecture about the possible applicability of some random-walks type of processes for modeling the classical *tensor* fields (of stresses and strains as used in engineering). Let me go over all these topics in brief.

**2.1 Work on the diffusion equation:**

I think I have posted many entries at this blog about my work on diffusion equation. So let me not regress into it all once again. Let me just note that I basically showed that, contrary to what post-graduate texts in maths (published by AMS) say, the diffusion equation does not necessarily imply an instantaneous action at a distance (IAD).

The IAD in diffusion, I pointed out, was an outcome of the features of the *solution* theory (Fourier’s theory, and also of Einstein’s analysis of the Brownian movement). But IAD was not necessarily implied either by the local physics of diffusion phenomena, or by the partial *differential* equation that is the diffusion equation. [Here, remember, a differential equation always, invariably, necessarily, etc., is local in nature—it refers to an infinitesimal CV (control volume) or CM (control mass).]

In particular, I pointed out that the compactness of the support of the solution was the crucial issue here—whether the support was infinite (as in Fourier theory and in 2nd half of Einstein’s c. 1905 paper), or finite (as in any subdomain-based numerical method, or in the Brownian movement, i.e., the first half of the *same* paper by Einstein). In my view of the things, you can always transition from a collection of finite subdomains to an infinity of infinitesimal CVs that are still distributed over only a *finite* interval, via a suitable limiting process. The finite support, of course, could grow in extent with time.

These observations had never been made in about **200** years of the existence of Fourier’s theory. (Go ahead, hunt for the precedents!) You have to make this distinction between a (local) PDE and its (possibly global) solutions obtained after conducting integration operations, and in this entire process, you have to be careful about not elevating a mere ansatz or an integration method to the high pedestal of “the” (provably unique) solution. That’s in effect what I had argued.

**2.2 Work on the diffraction phenomenon (Huygens-Fresnel theory):**

I also had a neat (though smallish) result concerning the obliquity factor in diffraction. I went through Huygens’, Fresnel’s and Kirchhoff’s analyses of the diffraction phenomenon (involving the Helmholtz equation—i.e., the spatial part of the wave PDE), and then pointed out the reasons why the obliquity factor could not be regarded an essential characteristic of the diffraction phenomenon itself.

Once again, the obliquity factor turned out to be a feature of how the analysis—specifically, the integration operations—had been set up. It was a feature of the mathematical solution procedure adopted for this problem. In diffraction, there was no fundamental physical process which operated in an anisotropic way, compelling the wavefield to have a greater amplitude in the forward direction and zero in the backward direction.

However, explanations for some **187** years (since Fresnel’s work) had characterized diffraction as an inherently anisotropic phenomenon. Yes, right up to my old copy of Resnick & Halliday. There was a surprise in it for me because while Fresnel was just a railroad engineer who had taught himself maths, Kirchhoff surely was a master of PDEs and their integration techniques. But this fact still had escaped even Kirchhoff.

I pointed out how even if you do keep isotropy to the Huygens’ wavelets, given the geometry of the interaction of Huygens’ wavelets and the surfaces where BCs are applied, you would still end up with the same amplitudes as those obtained by Fresnel’s or Kirchhoff’s analyses.

Come to think of it, you could even pick up this line of argument and apply it to *any* analysis that seeks to derive an expression for a field inside a finite domain by appeal to a pair of forward- and backward-going processes occurring within that domain; e.g., an analysis involving the advanced and retarded waves, or the transactional waves in certain interpretations of QM, etc. You just have to be careful about what BCs and integrals are being set up and how the integration processes are being conducted, that’s all!

**2.3 Computational modeling of transient heat conduction:**

I then tried to apply the random walks-based approach (RW) to model transients in the heat conduction, as they occur in a moving boundary problem, viz. the melting snowman. Since my focus was on conduction, I grossly simplified all the other aspects of this problem. (Having just come out of an illness, I would get easily tired back then.) The problem I considered was that of melting of a snowman.

Consider a snowman in the form of a vertical right-circular cylinder which is placed on a relatively large block of ice below. The snowman absorbs heat from the atmosphere by radiation and convection at its external surfaces. The absorbed thermal energy then flows through the volume of the cylinder to the relatively large block of ice underneath (which was regarded as infinitely large in the simulations). The temperature gradients of course come to exist. The heat in the atmosphere brings the external surface to the melting point of ice even as the interior portions remain below it. So, the surface melts—phase-transition ensures a constancy of temperature at the surface. The melting is more pronounced at the sharp corners. The resulting water gradually slips down, forming a thin and continuous layer on the external surface. (I ignored the fluid flow in my simulation.) All in all, the sharp cylindrical snowman slowly acquires a thumb-like shape over a period of time, and then still continues to shrink down in size.

I first tried to apply RW for heat conduction in this scenario, but soon found that there was a great deal of noise due to randomness. So, I set up a “conversion” from the particles-based approach of RWs to a local, continuum-based approach, thus ending up with a description which was essentially equivalent to a cellular automata-based one. I then performed the simulations with this CA-based approach (in 3D), compared the changing external contours of the melting snowman with an actual experiment (done at home, for less than Rs. 200/- as the total cost—for thermocouple wires, basically), and presented a paper at an international conference.

This piece of work added the necessary component of “engineering” and “experimentation” to my thesis. While my guide was always happy with my progress, he also was a bit worried that examiners might look at my thesis and conclude that it was all a useless piece of theoretical, almost scientific work—it had little “practical” component to it, and so, couldn’t qualify for a degree in *engineering*. So, he was quite relieved when I discussed this idea of snowman with him—he immediately gave me a go ahead!

**2.4 Conjecture for using RWs for modeling tensor fields:**

Then, in addition, I also had this conjecture regarding the feasibility of random walks for simulating tensor fields. Since I haven’t spoken at length about it here at this blog, let me note something here.

There were certain *rigorous mathematical arguments* (coming from Ivy League professors of mechanics as well as from seemingly competent but obscure Russian authors) which had purportedly shown that stochastic processes like random walks could provably *not* be used for simulating the stress/strain fields.

Yet, I was confident of my conjecture, out of some basic considerations which I had in mind. So I gave a conference presentation on it (in an international conference on mathematics), and also included it in my thesis.

Much later on (after my PhD defence), I grew further confident that this conjecture should definitely come to hold; that it could be proved. That is to say, the earlier (intricate) proofs by reputed mechanicians / mathematicians could be shown to have holes in them. (Not that my argument was flawless either. A professor had spotted a weak link in my argument at that conference, and had brought it to my attention in a most gentle, indirect manner.)

Then, some time still later on, I ran into some “simple” but directly useful work by a young Chinese author (perhaps a PhD student). If I remember it right, he had published this paper while working in China itself. His work was similar to an intermediate step I had in mind, but it was much more complete, even neat. No, he was not concerned with the random walks as such. All that he did was to give a working model for constructing stress/strain fields, by starting with a finite 3D unit cell having an internal structure of a truss and treating it as if it were a finite approximation for an infinitesimal CV of the continuum. I had somewhat similar ideas, and had in fact inserted a couple of screen-shots of the truss-based simulations I had conducted for a preliminary study. But he had gone much further. If I recall his paper right, he had even arrived at the right values for the truss-related parameters (like stiffnesses of the members) if this unit cell was to converge to the continuum equations of elasticity in the limit of vanishing size.

Now, by regarding the process of re-distribution of forces along the truss members as an abstract flow, and by randomizing it (discretizing it in the process), it should be easily possible to come to a proof of my conjecture. Also a neat computational simulation. Of course, the issue is not as simple as it looks on the surface. Free surfaces in a multiply-connected domain pose a tricky issue—they deform freely, and so, uniqueness becomes tricky to handle. Even then, with sufficient care (or appeal to ideas from CoV) I am sure that it can be done.

OK. I will do it some other time in future! (This has been a TBD paper on my list for almost a decade or so by now; I simply don’t run into suitable ME/MTech students for me to guide on this topic! … Anyway, this blog is in copyright, just in case you didn’t notice it…)

**3. My PhD-time work on QM (photon propagation):**

Alright, finally we come to my PhD-time work on photons propagation. In a series of tweets, I said (on 18 July 2019):

“1/4. My old (PhD-time) approach, then called “new approach” and also as FAQ (Fields As Quanta): I’ve abandoned it; the one in the Outline document replaces it completely. FAQ anyway dealt with only the propagation of only the photons, not their generation or absorption (i.e. it didn’t deal with the creation/annihilation operators). FAQ didn’t deal with the propagation of other particles, viz., electrons, protons, or neutrons either.”

and

“2/4. FAQ still remains valid as an abstract description, as referring to the propagation characteristics of photons in the limit that the medium is continuous (i.e., it is homogenized from discrete and dispersed atomic nuclei), i.e., if the propagation dynamics is diffusive, not ballistic.”

About this second tweet, I subsequently had second thoughts soon after, and so I noted, right on the next day (on 19 July 2019) the following comment (a reply) to it:

“Umm… I am not sure precisely what all considerations should enter into taking the limits (for arriving at the propagation characteristics of photons as conceptualized in my older, PhD-time, approach). Would have to work through how the Schrodinger formalism (and hence my new approach) goes from and photons to the classical, dynamical EM fields. To be done in future. But yes, FAQ dynamics *was* diffusive, that’s for certain.”

Thus, I first said that FAQ still remains valid, when seen as an abstract description. However, just one day later, I also pointed out the more basic and possibly tricky issues there might be—viz., finding the right kind of limiting processes which *start from* the Schrodinger formalism and *end up at* Maxwell’s equations.

I feel confident that people must have thrashed out this topic (TDSE EM) long time ago. It’s just that I myself have never studied the topic so far (in fact I haven’t even done the literature search on it), and so, I don’t have a good idea about what all technical issues might get involved in it.

Thus, I will have to first study this topic (from the mainstream QM to EM). Only then would I be able to understand the mapping well enough that I could understand the Hertzian waves right in the QM settings. It’s only after this stage that I will be I be able to say something definitively about the manner in which FAQ can really hold, and if yes, how well. Worrying about the right kind of a limiting procedure would be just a part of it, but an important one. … So yes, you can take these particular tweets with a pinch of salt.

**4. How did I get to my old PhD-time approach for photons (i.e. FAQ), in the first place?**

OK. Now that we are at it, here is a question that might have arisen in your mind: If I didn’t know QM well back then (during my PhD-studies days), then how could I dare propose this approach (viz. FAQ) so confidently?

Ummm… Let’s leave the daring and the confidence parts aside for now. Let’s focus on the “how” of it—how I got to my ideas. This part is much more interesting. At least to me.

How precisely did I end up at the idea of FAQ?

Well, I began with a kind of a “correspondence principle” (not in the Copenhagen sense of the term; read on). Briefly, the “correspondence” which I had in mind was the fact that single photons one-at-a-time mark only isolated dots on the CCD surface, but in the large-flux situations, their density pattern converges to the continuum interference pattern as described by Young.

So, I imagined a point-source emitting photons. Mind you, photons for me were, back then, *spatially discrete particles* of light, a la Einstein and Feynman—both their ideas had held a tremendous sway over my thinking back then.

I then imagined an ideal absorber in the form of a spherical surface kept at some distance from the source, somewhat like your usual Gaussian surface from electrostatics, but the difference here was that while the Gaussian surface is imaginary and allows anything to move through it freely, here, it was an actual absorber, albeit imaginary. This spherical surface was centered on the same point source. I asked myself what kind of variations in density should light show, in the continuum description, on this concentric spherical surface if its radius was varied a bit. In essence, I was developing my logic by starting from Gauss’ theorem and the Poisson-Laplace equation.

I then transitioned, in my ideas, to the Helmholtz equation by imagining a time-steady waviness to the field. Now, if the radius of the sphere were constrained to be an integral multiple of the spatial period (i.e. wavelength) of light, then the total quantity of photons being absorbed at the spherical surface should remain the same for a sphere of any such a radius. The only rationale which could justify this assumption was: to have a conservation principle in place, by asserting that photons *are* conserved *while* they *still* are *in transit* through the empty space (i.e. before they get absorbed on the spherical surface). Again, remember, I was using the idea of photons as if they were spatially discrete particles, like the grains of mustard seed.

Conservation principles are neat, I had learnt mostly in reference to the ample evidence I found in engineering sciences. (Even if I were to know about Noether’s theorem, I would have disregarded it—such was, and still is, my temperament. I think that this theorem is merely a reformulation of a very narrow range of physics—one that is restricted to merely 2nd-order linear PDEs. Anyway, read on…)

If the photon number conservation was to be had in theory (during propagation) at integral multiples of for the radius of the sphere, then was there any sound reason to give up conservation when the radius was ? (Here I am assuming that at zero radius, the light has the maximum amplitude.) Couldn’t we explain the complete darkness at these odd radii by positing that the photon was still there—it’s just that the sphere of that particular radius didn’t absorb it? After all, we could always posit a variable called the absorption fraction which would be related to the *local* amplitude of the spatial wave, right? That’s how I decided to conserve the photon number, and thereby, shift the burden of the variable levels of brightness at the absorber by appeal to a photon-absorption process that varied in efficiency precisely in response to the local wave amplitude associated with the tiny grain which was photon. (I regarded this grain as a localized condition in the luminiferous aether.)

Now, the next question was: If the photons had a ballistic dynamics (i.e. a straight-line motion), then the point on the spherical surface where a given photon eventually would land, would have already been determined right at the source point—some internal processes in the emitter material would be responsible for ejecting it at random orientations, which would also determine its landing location. (Dear Bohmians, do you see something familiar? However, please note, this was entirely my own thinking. I had not come across Bohm back then. Please read on.)

I thought that while this was possible, it was also possible that the photons could also undergo random-walks. How did I introduce random walks?

Well, the direct experimental evidence showed that this propagation problem had two essential features: (i) many discrete spots which go in a limit to a continuous pattern of finite densities, and (ii) random locations on the absorber surface where the grainy photons land, i.e., no correlation between the two points where any two successive photons get absorbed.

Since the continuum viewpoint of light (Young’s waves) had to be reached in the limit, it was important to keep in mind always. It was here that I happened to recall Huygens’ principle. I was also quite at home with the idea of randomly intersecting a 3D surface with a linear probe—I had already studied stereology at the University of Alabama at Birmingham (UAB).

Huygens’ principle involved every point of space as if it were some kind of a “source” for the new (Huygens’) wavelets. The Young pattern could be obtained by superposing all the Huygens’ wavelets. The discrete spots could be had by dividing the surface of the Huygens wavelets and taking the individual surface patches to vanishing size (a la mesh refinement). This satisfactorily addressed the first essential feature noted above (viz. discrete spots). As to the second feature (randomness) it could also be satisfied by randomizing the selection of the spherical patch on the Huygens’ wavelet (a la stereology).

This much part, I in fact had already completed when I was right at UAB, completely on my own, though I had never shared this idea with anyone. I guess it was already over before 1992 came to an end.

More than a decade later, now in Pune: Starting with Gauss’ theorem, and touching on the Huygens process and stereology, and now, also throwing in the vector addition rules for ensuring that right phases appear throughout the propagation, and so, local amplitudes also come out right in the large-flux situation, I could get to my *diffusive* dynamics for the spatially discrete photons.

I did suspect that this procedure (of randomizing the selection of a point on any of Huygens’ wavelets) meant that the photons would have to be imagined either as (i) getting scattered everywhere during their propagation, or (ii) possibly getting *annihilated* after travelling even just an infinitesimal distance in empty space, and then, somehow, also getting re-created (the time lag between the annihilation and the subsequent creation being zero), effectively satisfying the conservation principle. On either count, the photon would keep changing its directions randomly, because the point on the surface of the Huygens wavelet was randomized.

Of course, I could not figure out a good physical reason for such a process.

Scattering of one photon by other photons seemed implausible—though I couldn’t figure out any particular reason why it would be implausible. Anyway reliance on scattering led to an impossible situation when there was only one photon inside the interference chamber.

There also was no proper physicist who would even so much as be willing to just listen to me. (I tried more than 15–20.) On the other hand, so many leading ones among them were offering descriptions of QM in terms of a random “quantum foam/froth” which produces and annihilates *any* particles anywhere anytime—even *massive* ones and even in *empty* space at any *random* time. So, I thought that my idea of continuous disappearance and appearance but in a different direction, would not be found too odd.

(Discussions of foundations of QM *has* improved by leaps and bounds since *engineers* started taking interest in building QC. In fact, recently, a somewhat similar remark also came from Dr. Sabine Hossenfelder on her blog. But I am talking of those days—around 2005 times.)

Of course, since I myself didn’t have even an iota of a physical understanding regarding such virtual annihilation/creation pairs for photons, but since they were necessary in my scheme because I had randomized not the source point but the Huygens surface, rather than going full wacko (as most any physicist in my situation would), I did what any graduate student of *engineering* would do: I simply refrained from mentioning any such implications for a possible physics of it, and instead chose to phrase my description of the process in terms which heavily relied on the well-established, well-reputed, classical principle of Huygens’.

No one ever asked any questions on this part either. Neither in conference, nor in PhD defence, nor even after sharing my papers with physicists (some of who had on their own requested my papers). So, it kindaa went through!

Phewww…. All the hoops that a hapless PhD student has to jump through, just to *get* to his degree! (In my case, it was even worse: these were the closed* surfaces* of the Huygens wavelets, not mere closed *curves* as in the hoops.)

So, that’s how I had arrived at my PhD time approach. I did it by randomizing the spherical surfaces employed in the Huygens’ process, and by imagining a spatially discrete particle of the photon at all such locations at each one of the subsequent instants. The movement of the photon, when it goes on cutting the respective surfaces of all the freshly generated series of Huygens’ wavelets, when the cutting is randomized, obviously forms a *simplest* kind of a Weiner process—it’s the direct counterpart of the random-walks, but for wave-fields.

People right from Ulam et al. had proposed and used random walks (aka Monte Carlo) for diffusive and potential fields, for 50+ years. However, none had added just some more calculations with the wave- and displacement-vectors to account for the phases, and thereby generalized the random-walks to be able to handle the wavefields too. That was another neat thing to know. (Yes, please, do go ahead! Do hunt for the precedents!!)

Anyway, that’s how the FAQ dynamics came to be diffusive.

And all said and done, it did come to reproduce a seemingly same kind of a transition from a pattern of random dots to the Young interference pattern as experiments had shown!

One final point. But why did I disregard the ballistic dynamics—which would have all randomness concentrated only in the source and let photons fly straight? Yes, come to think of it, if you do assume a spatially discrete nature for the photon, then there is obviously no good reason to deny such a possibility.

Here, I am not sure, because I don’t remember having writing down any note on it. So it’s kindaa hard to tell now, from a distance of years. I will try to reconstruct some possible considerations starting from some indirect points, and purely from memory.

I seem to recall that I was apprehensive that what I called “size effects” might come into picture and make this approach unsound. I mean to say, a perfectly uniform randomness (distributed over the entire emitter surface) was hard to imagine as the emitter surface became ever smaller, and reached the natural limit of a single atom. For one thing, the emitted quantity might get affected, I thought. Secondly, single atoms, acting as emitters, had to have some directionality to their emissions because their orbitals [whatever it meant—I didn’t have a good idea about them back then] weren’t always spherically symmetric. I think I had considered this point.

Did I consider the delayed-choice kind of considerations? I think I did, but in some simple indirect ways, not very carefully or systematically. I mean to say, I don’t remember going through write-ups on the delayed-choice experiments at all, and then taking any decision. I rather remember thinking in terms like a camera shutter suddenly coming in the way of a photon when it’s still in mid-flight and all. If the shutter were to be a perfect sink (one that didn’t re-emit the photon), or if it were to re-emit photons from a different location on the shutter surface (after internal energy undergoing some unpredictable oscillations within the shutter material), then it would adversely affect the final pattern on the screen, I had thought. The real-time changes for the propagating photon might get better handled by distributing randomness over the entire spatial region of the chamber, I had thought.

But I think that all in all, it wasn’t any such careful consideration. I chose the randomized Huygens’ process because I thought it gave good enough an explanation.

In the final analysis, there are too many problems with this entire approach—even with just a spatially discrete photon anyway, and furthermore if it comes embedded in a description that has no IAD anywhere in itself. Some or the other part of QM will then have to keep getting violated. You just can’t avoid it. So, the best way to understand QM is not to begin with photons but with electrons—and with the Schrodinger formalism. The measurement problem is the only remaining issue then.

**5. Homework for the skeptics among you:**

Go through my PhD abstract posted at iMechanica *even before* the defence [(.PDF) ^], and check out if what I wrote above, purely on the fly and purely from memory, matches with what I had officially reported back then, or not. If you find serious discrepancies, please bring them to my notice. Thanks in advance.

Of course, now that I’ve completely abandoned the grainy description of photons as the actual physical reality, all the above doesn’t much matter. FAQ, even if valid, would have to be taken as only a higher-level, abstract description of an entirely different kind of a mechanism.

So, let’s leave this entire PhD-time approach right behind us (forever), and continue with the next tweet in this series. They directly deal with the aspects of my latest approach (as in the Outline document)… However, I will pick it up in the next post. It’s almost 5900 words already! Give me a break of at least a 10–15 days. Until then, take care and goodbye.

**A song I like:**

(Marathi) “ambaraatalyaa niLyaa ghanaachee”

Singer: Ramdas Kamat

Music and Lyrics: Veena Chitako