A flip, but not a flop…

“Why is it that when you look in the mirror, the left and right directions appear flipped, but not the up and down?”


Stop reading!

Do not read further until you have honestly tried answering that question!


The question was asked at the Physics StackExchange.

As often is the case, using only text is not at all good when it comes to explaining physics [^]; adding figures does help [^]. And then, animations are even better at it than having just “dead” (static) figures. Going further, interactive graphics, which let the user participate in manipulating the presentation of information, of course beats those mere animations. Better than that, if possible, is an actual demonstration in real life, accompanied by an explanation using simple words.

…As far as the above question is concerned, the Physics Girl [^] does a fairly good job [^].

The best mode of teaching-learning, of course, is an actual and immediate interaction with a person, who in turn might use (and allow you to use) any and all of the above options!

And that’s the reason why, regardless of how much technology progresses, the actual person-to-person type of teaching will never go out of business.


A Video I Liked:

A `Thought Leader’ gives a talk that will inspire your thoughts: [^]

 

 

Advertisements

Are the recent CS graduates from India that bad?

In the recent couple of weeks, I had not found much time to check out blogs on a very regular basis. But today I did find some free time, and so I did do a routine round-up of the blogs. In the process, I came across a couple of interesting posts by Prof. Dheeraj Sanghi of IIIT Delhi. (Yes, it’s IIIT Delhi, not IIT Delhi.)

The latest post by Prof. Sanghi is about achieving excellence in Indian universities [^]. He offers valuable insights by taking a specific example, viz., that of the IIIT Delhi. I would like to leave this post for the attention of [who else] the education barons in Pune and the SPPU authorities. [Addendum: Also this post [^] by Prof. Pankaj Jalote, Director of IIIT Delhi.]

Prof. Sanghi’s second (i.e. earlier) post is about the current (dismal) state of the CS education in this country. [^].

As someone who has a direct work-experience in both the IT industry as well as in teaching in mechanical engineering departments in “private” engineering colleges in India, the general impression I seem to have developed seemed to be a bit at odds with what was being reported in this post by Prof. Sanghi (and by his readers, in its comments section). Of course, Prof. Sanghi was restricting himself only to the CS graduates, but still, the comments did hint at the overall trend, too.

So, I began writing a comment at Prof. Sanghi’s blog, but, as usual, my comment soon grew too big. It became big enough that I finally had to convert it into a separate post here. Let me share these thoughts of mine, below.


As compared to the CS graduates in India, and speaking in strictly relative terms, the mechanical engineering students seem to be doing better, much better, as far the actual learning being done over the 4 UG years is concerned. Not just the top 1–2%, but even the top 15–20% of the mechanical engineering students, perhaps even the top quarter, do seem to be doing fairly OK—even if it could be, perhaps, only at a minimally adequate level when compared to the international standards.

… No, even for the top quarter of the total student population (in mechanical engineering, in “private” colleges), their fundamental concepts aren’t always as clear as they need to be. More important, excepting the top (may be) 2–5%, others within the top quarter don’t seem to be learning the art of conceptual analysis of mathematics, as such. They probably would not always be able to figure out the meaning of even a simplest variation on an equation they have already studied.

For instance, even after completing a course (or one-half part of a semester-long course) on vibrations, if they are shown the following equation for the classical transverse waves on a string:

\dfrac{\partial^2 \psi(x,t)}{\partial x^2} + U(x,t) = \dfrac{1}{c^2}\dfrac{\partial^2 \psi(x,t)}{\partial t^2},

most of them wouldn’t be able to tell the physical meaning of the second term on the left hand-side—not even if they are asked to work on it purely at their own convenience, at home, and not on-the-fly and under pressure, say during a job interview or a viva voce examination.

However, change the notation used for second term from U(x,t) to S(x,t) or F(x,t), and then, suddenly, the bulb might flash on, but for only¬†some of the top quarter—not all. … This would be the case, even if in their course on heat transfer, they have been taught the detailed derivation of a somewhat analogous equation: the equation of heat conduction with the most general case, including the possibly non-uniform and unsteady internal heat generation. … I am talking about the top 25% of the graduating mechanical engineers from private engineering colleges in SPPU and University of Mumbai. Which means, after leaving aside a lot of other top people who go to IITs and other reputed colleges like BITS Pilani, COEP, VJTI, etc.

IMO, their professors are more responsible for the lack of developing such skills than are the students themselves. (I was talking of the top quarter of the students.)

Yet, I also think that these students (the top quarter) are at least “passable” as engineers, in some sense of the term, if not better. I mean to say, looking at their seminars (i.e. the independent but guided special studies, mostly on the student-selected topics, for which they have to produce a small report and make a 10–15 minutes’ presentation) and also looking at how they work during their final year projects, sure, they do seem to have picked up some definite competencies in mechanical engineering proper. In their projects, most of the times, these students may only be reproducing some already reported results, or trying out minor variations on existing machine designs, which is what is expected at the UG level in our university system anyway. But still, my point is, they often are seen taking some good efforts in actually fabricating machines on their own, and sometimes they even come up with some good, creative, or cost-effective ideas in their design- or fabrication-activities.

Once again, let me remind you: I was talking about only the top quarter or so of the total students in private colleges (and from mechanical engineering).

The bottom half is overall quite discouraging. The bottom quarter of the degree holders are mostly not even worth giving a post X-standard, 3 year’s diploma certificate. They wouldn’t be able to write even a 5 page report on their own. They wouldn’t be able to even use the routine metrological instruments/gauges right. … Let’s leave them aside for now.

But the top quarter in the mechanical departments certainly seems to be doing relatively better, as compared to the those from the CS departments. … I mean to say: if these CS folks are unable to write on their own even just a linked-list program in C (using pointers and memory allocation on the heap), or if their final-year projects wouldn’t exceed (independently written) 100+ lines of code… Well, what then is left on this side for making comparisons anyway? … Contrast: At COEP, my 3rd year mechanical engineering students were asked to write a total of more than 100 lines of C code, as part of their routine course assignments, during a single semester-long course on FEM.

… Continuing with the mechanical engineering students, why, even in the decidedly average (or below average) colleges in Mumbai and Pune, some kids (admittedly, may be only about 10% or 15% of them) can be found taking some extra efforts to learn some extra skills from the outside of our pathetic university system. Learning CAD/CAM/CAE software by attending private training institutes, has become a pretty wide-spread practice by now.

No, with these courses, they aren’t expected to become FEM/CFD experts, and they don’t. But at least they do learn to push buttons and put mouse-clicks in, say, ProE/SolidWorks or Ansys. They do learn to deal with conversions between different file formats. They do learn that meshes generated even in the best commercial software could sometimes be not of sufficiently high quality, or that importing mesh data into a different analysis program may render the mesh inconsistent and crash the analysis. Sometimes, they even come to master setting the various boundary condition options right—even if only in that particular version of that particular software. However, they wouldn’t be able to use a research level software like OpenFOAM on their own—and, frankly, it is not expected of them, not at their level, anyway.

They sometimes are also seen taking efforts on their own, in finding sponsorships for their BE projects (small-scale or big ones), sometimes even in good research institutions (like BARC). In fact, as far as the top quarter of the BE student projects (in the mechanical departments, in private engineering colleges) go, I often do get the definite sense that any lacunae coming up in these projects are not attributable so much to the students themselves as to the professors who guide these projects. The stories of a professor shooting down a good project idea proposed by a student simply because the professor himself wouldn’t have any clue of what’s going on, are neither unheard of nor entirely without merit.

So, yes, the overall trend even in the mechanical engineering stream is certainly dipping downwards, that’s for sure. Yet, the actual fall—its level—does not seem to be as bad as what is being reported about CS.

My two cents.


Today is India’s National Science Day. Greetings!


Will stay busy in moving and getting settled in the new job. … Don’t look for another post for another couple of weeks. … Take care, and bye for now.

[Finished doing minor editing touches on 28 Feb. 2017, 17:15 hrs.]