Are the recent CS graduates from India that bad?

In the recent couple of weeks, I had not found much time to check out blogs on a very regular basis. But today I did find some free time, and so I did do a routine round-up of the blogs. In the process, I came across a couple of interesting posts by Prof. Dheeraj Sanghi of IIIT Delhi. (Yes, it’s IIIT Delhi, not IIT Delhi.)

The latest post by Prof. Sanghi is about achieving excellence in Indian universities [^]. He offers valuable insights by taking a specific example, viz., that of the IIIT Delhi. I would like to leave this post for the attention of [who else] the education barons in Pune and the SPPU authorities. [Addendum: Also this post [^] by Prof. Pankaj Jalote, Director of IIIT Delhi.]

Prof. Sanghi’s second (i.e. earlier) post is about the current (dismal) state of the CS education in this country. [^].

As someone who has a direct work-experience in both the IT industry as well as in teaching in mechanical engineering departments in “private” engineering colleges in India, the general impression I seem to have developed seemed to be a bit at odds with what was being reported in this post by Prof. Sanghi (and by his readers, in its comments section). Of course, Prof. Sanghi was restricting himself only to the CS graduates, but still, the comments did hint at the overall trend, too.

So, I began writing a comment at Prof. Sanghi’s blog, but, as usual, my comment soon grew too big. It became big enough that I finally had to convert it into a separate post here. Let me share these thoughts of mine, below.

As compared to the CS graduates in India, and speaking in strictly relative terms, the mechanical engineering students seem to be doing better, much better, as far the actual learning being done over the 4 UG years is concerned. Not just the top 1–2%, but even the top 15–20% of the mechanical engineering students, perhaps even the top quarter, do seem to be doing fairly OK—even if it could be, perhaps, only at a minimally adequate level when compared to the international standards.

… No, even for the top quarter of the total student population (in mechanical engineering, in “private” colleges), their fundamental concepts aren’t always as clear as they need to be. More important, excepting the top (may be) 2–5%, others within the top quarter don’t seem to be learning the art of conceptual analysis of mathematics, as such. They probably would not always be able to figure out the meaning of even a simplest variation on an equation they have already studied.

For instance, even after completing a course (or one-half part of a semester-long course) on vibrations, if they are shown the following equation for the classical transverse waves on a string:

\dfrac{\partial^2 \psi(x,t)}{\partial x^2} + U(x,t) = \dfrac{1}{c^2}\dfrac{\partial^2 \psi(x,t)}{\partial t^2},

most of them wouldn’t be able to tell the physical meaning of the second term on the left hand-side—not even if they are asked to work on it purely at their own convenience, at home, and not on-the-fly and under pressure, say during a job interview or a viva voce examination.

However, change the notation used for second term from U(x,t) to S(x,t) or F(x,t), and then, suddenly, the bulb might flash on, but for only some of the top quarter—not all. … This would be the case, even if in their course on heat transfer, they have been taught the detailed derivation of a somewhat analogous equation: the equation of heat conduction with the most general case, including the possibly non-uniform and unsteady internal heat generation. … I am talking about the top 25% of the graduating mechanical engineers from private engineering colleges in SPPU and University of Mumbai. Which means, after leaving aside a lot of other top people who go to IITs and other reputed colleges like BITS Pilani, COEP, VJTI, etc.

IMO, their professors are more responsible for the lack of developing such skills than are the students themselves. (I was talking of the top quarter of the students.)

Yet, I also think that these students (the top quarter) are at least “passable” as engineers, in some sense of the term, if not better. I mean to say, looking at their seminars (i.e. the independent but guided special studies, mostly on the student-selected topics, for which they have to produce a small report and make a 10–15 minutes’ presentation) and also looking at how they work during their final year projects, sure, they do seem to have picked up some definite competencies in mechanical engineering proper. In their projects, most of the times, these students may only be reproducing some already reported results, or trying out minor variations on existing machine designs, which is what is expected at the UG level in our university system anyway. But still, my point is, they often are seen taking some good efforts in actually fabricating machines on their own, and sometimes they even come up with some good, creative, or cost-effective ideas in their design- or fabrication-activities.

Once again, let me remind you: I was talking about only the top quarter or so of the total students in private colleges (and from mechanical engineering).

The bottom half is overall quite discouraging. The bottom quarter of the degree holders are mostly not even worth giving a post X-standard, 3 year’s diploma certificate. They wouldn’t be able to write even a 5 page report on their own. They wouldn’t be able to even use the routine metrological instruments/gauges right. … Let’s leave them aside for now.

But the top quarter in the mechanical departments certainly seems to be doing relatively better, as compared to the those from the CS departments. … I mean to say: if these CS folks are unable to write on their own even just a linked-list program in C (using pointers and memory allocation on the heap), or if their final-year projects wouldn’t exceed (independently written) 100+ lines of code… Well, what then is left on this side for making comparisons anyway? … Contrast: At COEP, my 3rd year mechanical engineering students were asked to write a total of more than 100 lines of C code, as part of their routine course assignments, during a single semester-long course on FEM.

… Continuing with the mechanical engineering students, why, even in the decidedly average (or below average) colleges in Mumbai and Pune, some kids (admittedly, may be only about 10% or 15% of them) can be found taking some extra efforts to learn some extra skills from the outside of our pathetic university system. Learning CAD/CAM/CAE software by attending private training institutes, has become a pretty wide-spread practice by now.

No, with these courses, they aren’t expected to become FEM/CFD experts, and they don’t. But at least they do learn to push buttons and put mouse-clicks in, say, ProE/SolidWorks or Ansys. They do learn to deal with conversions between different file formats. They do learn that meshes generated even in the best commercial software could sometimes be not of sufficiently high quality, or that importing mesh data into a different analysis program may render the mesh inconsistent and crash the analysis. Sometimes, they even come to master setting the various boundary condition options right—even if only in that particular version of that particular software. However, they wouldn’t be able to use a research level software like OpenFOAM on their own—and, frankly, it is not expected of them, not at their level, anyway.

They sometimes are also seen taking efforts on their own, in finding sponsorships for their BE projects (small-scale or big ones), sometimes even in good research institutions (like BARC). In fact, as far as the top quarter of the BE student projects (in the mechanical departments, in private engineering colleges) go, I often do get the definite sense that any lacunae coming up in these projects are not attributable so much to the students themselves as to the professors who guide these projects. The stories of a professor shooting down a good project idea proposed by a student simply because the professor himself wouldn’t have any clue of what’s going on, are neither unheard of nor entirely without merit.

So, yes, the overall trend even in the mechanical engineering stream is certainly dipping downwards, that’s for sure. Yet, the actual fall—its level—does not seem to be as bad as what is being reported about CS.

My two cents.

Today is India’s National Science Day. Greetings!

Will stay busy in moving and getting settled in the new job. … Don’t look for another post for another couple of weeks. … Take care, and bye for now.

[Finished doing minor editing touches on 28 Feb. 2017, 17:15 hrs.]


CFD Code Snippets—1: 1D transient conduction, FTCS, Dirichlet BCs

This semester, I am teaching an elective UG course on CFD. For illustrating ideas concerning the title problem, I began by borrowing the Python code written by Prof. Lorena Barba (general URL: [^]; the step concerning diffusion: [^] )), and then altered it a bit. I am sharing my modified version here.

In particular, here is a summary of my changes: (i) The Dirichlet BCs are now applied (so that time-stepping can go on for an indefinitely long period), (ii) graph plotting is done right within the time-marching loop, (iii) three different initial conditions can be used, etc. Variable names have been changed, and in fact, even comments have been expanded/corrected. (For instance, I use the term “thermal diffusivity” instead of“viscosity,” and use the actual material property value for it.)

This code can be used for the laboratory component (aka “Term-Work”) for the final-year elective course on CFD, in the S. P. Pune University.

This is the same University that denies me approval as a Professor, now because they think that I don’t have the required amount of work-experience (i.e. 10 years of both industrial, research and teaching experience put together).

The thing is, I didn’t always work for companies with annual turnover of 15 crores or more.

According to the PR guy of my employers, this university is now asking for my previous employers (e.g. startups in India/abroad) to certify in writing on their original letterheads not only the fact that they had employed me, but also to identify whether they had had 15 crores or more of annual turnover during the times when they had employed me or not. The rule is new, but applies retrospectively, i.e., it is supposed to go back even to the late 1990s or early ’00s times, when I worked in the software startups, sometimes with barely 1 or 2 employees too in their initial stages.

Most of these companies are by now wound up (e.g. QueriSoft grew to 500+ people whereas I was may be 13th/14th employee in Pune; nirWANa Inc. and Imagine Tech. where I was the fourth employee, and the second employee etc.—with nirWANa growing to US $1 Million in VC funding (coming from Kanwal Rekhi) but only after I left (at which point it had grown to 60+ employees)). I cannot have their certificates either because they can no longer be contacted, or even if the VC funding was US $ 1 Million, the sales turnover was not, etc.

Thus, the quantum of my total experience, according to the certifiable madness of the “authorities” at the S. P. University of Pune, suddenly dwindles down.

This rule, thus, allows the S. P. University of Pune to happily debar me from becoming a Professor.

It also allows employers to employ people like me not following the UGC scale, but on a consolidated, lower-level, salary.

I do not know precisely who among the two parties wishes to emphasize the rule more, to short-sell me. However, here, I am inclined to believe that it is the former. After all, it has been the government-run COEP and the (now S.P.) University of Pune who have happily supported people like Dr. Ashok Ghatol and Dr. (!) G. K. Kharate.

If professors who have worked nowhere else but in the private engineering colleges affiliated to the university rules are to be applied the same rule, then many of them would disqualify. This contradiction apparently does not matter to the University “authorities.” The rule is retrospective in action, but only for the new applicants, as per what our PR gentleman told me.

Anyway, I am going to share my code, but let me do so with a forthright moral denunciation of those office-bearers of the S. P. Pune University (and/or Maharashtra government) who are (or have been) responsible for framing such idiotic, harassing, anti-life and overall morally putrid rules. (For all I know, there could even be a casteist angle to it all; after all, it’s S. P. Pune University!)

Anyway, here is the Python code. It’s been written in v. 2.7 of Python. You will also need numpy and matplotlib installed. Feel free to use any IDE; I use PyCharm Community Edition.

# 1D Transient Conduction, using FTCS, with Dirichlet BCs.
# Code written by and copyright (c)Ajit R. Jadhav.
# Based on the code by Prof. Lorena Barba (12 Steps to NS).
# Shared with an explicit identification of how morally putrid 
# the S. P. Pune University is.
# Version: 27-Jan-2016.

# Importing Routines
# Use numpy arrays for efficiency
import numpy
# Use a neat plotting library
from matplotlib import pyplot  as plt

#  Program Data. All units are in SI
# Domain size, in meters
domLen = 0.1
# Number of cells
nc = 20
# Number of nodes
nx = nc + 1
# Compute the width of each cell
dx = domLen / nc
# Thermal diffusivity. This value is for Alumninium, in m^2/s
alpha = 8.418e-5
# Physical time over which the simulation is to be run
totalTime = 10.0
# Temperatures in degree Celcius, to use in constructing
# the initial and boundary conditions
tempLevel_1 = 0.0
tempLevel_2 = 100.0

# Parrot out the main input data
print("Length of the domain, in m: %lf" % domLen)
print("Number of cells: %d. Number of nodes: %d" % (nc, nx))
print("Therefore, the cell-width, in m: %lf" % dx)
print("Thermal diffusivity, in m^2/s: %lf" % alpha)
print("Duration (in physical seconds) for the simulation: %lf" % totalTime)
print("Temperature levels (deg. C): Level 1: %lf, Level 2: %lf" % (tempLevel_1, tempLevel_2))
# Main program data over

# Compute the duration of each time-step, and the number of time-steps required
# Stability criterion: r = \alpha \dfrac{\Delta t}{(\Delta x)^2}
# r <= 0.5 for stability
r = .35
print("Assumed stability criterion value: %lf" % r)
# Time-interval between steps, in seconds
dt = r * dx ** 2 / alpha
print("Duration of each time-step in s, after applying the stability criterion: %lf" % dt)
# Compute the total no. of time-steps (an integer) to fit within the given time-interval
nt = int(totalTime / dt)
print("Number of time-steps required to step through: %d" % nt)
# No. of time-steps to skip for plotting
stepsToSkipInPlotting = 10

# Create the numpy arrays, initialized to zero, for holding
# the primary variable values (here, temperature)

# The main array, holds the values after time-marching through one step
T = numpy.zeros(nx)
# A temporary array, holds the values at the previous time-step
Tn = numpy.zeros(nx)
#  Setting up of the initial condition:
#  Uncomment the required IC and keep others commented

# IC1: A single pulse in the middle
# TL = tempLevel_1
# TR = tempLevel_1
# T[ nx/2 ] = tempLevel_2

# IC2: A step function in the middle
# TL = tempLevel_2
# TR = tempLevel_2
# T[ nx/3.0 : 2.0*nx/3.0  ] = tempLevel_1

# IC3: Left half at tempLevel_1; right half at tempLevel_2
TL = tempLevel_1
TR = tempLevel_2
T[0: nx / 2] = TL
T[nx / 2 + 1: nx] = TR

# Setting up of the initial condition is over

# Create the x-axis vector, for plotting purposes
# About the linspace function
#   numpy.linspace(start, stop, num, endpoint=True, retstep=False, dtype=None)
#   Returns evenly spaced numbers over a specified interval.
xAxis = numpy.linspace(0, domLen, nx)
plt.title("1D Transient Conduction, using FTCS")
plt.xlabel("Distance, in m")
plt.ylabel("Temperature, in deg C")
plt.plot(xAxis, T, 'r')

print("Initial condition is:")

#  Time-stepping, using FTCS
# Multiplying factor to be used at each time-step
MF = alpha * dt / dx ** 2

# Python range(nSize) returns an array of size nSize
# Thus, range(3) returns [0,1,2]
for n in range(nt):
    # We save the values of T at time n, to Tn,
    Tn = T.copy()
    # and apply the Dirichlet boundary conditions
    # to the solution at the time-step n
    Tn[0] = TL
    Tn[nx - 1] = TR

    # Then, we advance time to (n+1) and set T with it
    # A note on the range() function, and the index values.
    # -- The index to the right-most node in the arrays
    #    T and Tn is: nx-1. If we specify range( nx-1 ),
    #    then i will at most become _equal_ to nx-2
    #    i.e., one less than what we specified.
    for i in range(1, nx - 1):
        # This is the FTCS algorithm
        T[i] = Tn[i] + MF * (Tn[i - 1] - 2.0 * Tn[i] + Tn[i + 1])

    # We skip `stepsToSkipInPlotting' number of steps, in between two plots
    if n and not (n % stepsToSkipInPlotting):
        # Uncomment the following line for erasing out any earlier plots
        # plt.clf()
        # Uncomment the following line if you want to print T to console
        # print( T )
        plt.plot(xAxis, T, 'k')

# The solution after nt number of time-steps
print("The solution after %d steps i.e. %lf physical seconds is: " % (nt, nt * dt))
plt.plot(xAxis, T, 'b')


Some things to try:

  1. Try different values of the parameter <code>r</code>. For instance, set <code>r = 0.55</code> and see the instability develop.
  2. Try mesh refinement.
  3. Try changing material properties.
  4. Try different initial conditions. For instance, try triangular profile, or a sine-wave profile.
  5. Try setting a higher temperature, and keep the `r’ parameter very close to 0.5. See whether it is the initial condition of a triangle or of a sharp pulse which first develops instability. Try to understand the fact that the von Neumann stability analysis is only linear, and therefore provides only an initial estimate for the stability criterion.
  6. Compare in detail with the analytical solutions. For instance, the analytical solution for the initial triangular profile is worked out in Kreyszig.
  7. If inclined towards programming, try using fft routines to work out analytical solutions, have the program save both the FTCS and the FFT-based solutions to output files, and then write short scripts to plot the errors as functions of, e.g., the shape of the initial profile, space (location), time-step, mesh-refinement, `r’ parameter, etc.

[May be one more editing pass, sometime later this week or so.]


“They don’t even touch a good text-book!”

“They don’t even touch a good text-book!”

This line is a very common refrain that one often hears in faculty rooms or professors’ cabins, in engineering colleges in India.

Speaking in factual terms, there is a lot of truth to it. The assertion itself is overwhelmingly true. The fact that the student has never looked into a good (or “reference” or “foreign authors'”) text is immediately plain and clear to anyone who has ever graded their examination papers, or worked as an examiner on the oral/viva voce examinations.

The undergraduate Indian students these days, esp. those in Pune and Mumbai, and esp. those in the private engineering colleges, always refer to only a locally published text for all their studies.

These texts are published by a few local publishers well known to the students (and their professors). I wouldn’t mind dropping a few names: Nirali, Pragati, TechMax, etc. The books are published at almost throw-away prices (e.g. Rs. 200–300). (There also exists a highly organized market for the second-hand books. No name written, no pencil marks? Some 75% of the cost returned. Etc. There is a bold print, too—provided, the syllabus hasn’t changed in the meanwhile. In that case, there is no resale value whatsoever!)

The authors of these texts themselves are professors in these same private engineering colleges. They know the system in and out. No, I am not even hinting at any deliberate fraud or malpractice here. Quite on the contrary.

The professors who write these local text-books often are enthusiastic teachers themselves. You would have to be very enthusiastic, because the royalties they “command” could be as low as a one-time payment of Rs. 50,000/- or so. The payment is always only a one-time payment (meaning, there are no recurring royalties even if a text book becomes a “hit”), and it never exceeds Rs. 1.5 lakhs lump-sum or so. (My figures are about 5 year old.) Even if each line is copied verbatim from other books, the sheer act of having to write down (and then proof-read) some 200 to 350 pages requires for the author to invest, I have been told, between 2 to 4 months, working overtime, neglecting family and all. The monthly salary of these professors these days can easily approach or exceed Rs. 1 lakh. So, clearly, money is not the prime motivation here. It has to be something else: Enthusiasm, love of teaching, or even just the respect or reputation that an author hopes to derive in the sub-community of these local engineering colleges!

These professors—the authors—also often are well experienced (15–40 years of teaching experience is common), and they know enough to know what kind of examination questions are likely to come up on the university examinations. (They themselves have gone through the same universities.) They write these books targeting only task: writing the marks-scoring answers on those university examinations. Thus, these “text” books are more or less nothing but a student aid (or what earlier used to be called the “guide” books).

It in fact has evolved into a separate genre by itself. Contrary to an impression wide-spread among professors of private engineering colleges in India, there in fact are somewhat similar books also used heavily by the students in the USA. Thus, these local Indian books are nothing but an improvised version of the Schaums’ series in science and engineering (or the Sparks Notes in the humanities, in the US schools).

But there is a further feature here. There is a total customization thrown in here. These local books are now-a-days written (or at least adapted) to exactly match the detailed syllabus of each university separately. So, there are different books, by the same author and for the same subject, but one for Mumbai University, and the other for Pune University, etc. Students never mix up the universities.

The syllabus for each university is followed literally, down to dividing the text into chapters as per the headings of the modules mentioned in the syllabus (usually six per course), and dividing each chapter into sections, with the headings and order of these sections strictly following the order and the letter of the syllabus. The text in each section is followed by a compilation of the past university examination questions (of that same university) pertaining to that particular section alone. Most of these past examination questions are solved in the text—that’s the bulk of the book. When the opening page of a chapter lists the sections in it, the list also carries, in the parentheses, whether this section is “theory” or “numericals”.

Overall, the idea is, even just looking at the “text” book, a student can easily anticipate whether a question is likely to be asked on a given section or not, and if yes, of what kind. The students also work out many logics: “Every semester, they have asked a question on this section. So we have to mug it up well.” Or, playing the “contra”: “Last three semesters, not a single question here? It’s going to come this time round.” Etc. (Yes, I followed this practice in my lectures, too—I did want my students to score well on the final university examinations, after all!)

The customization, for each revision of the syllabus of each university, is done down to that level of detail. So, for the first year course on electrical engineering, you have one text-book of title, say, Electrical Engg. (FE), Pune University, 2012 course, and another text book, now of the title, say, Basic Electrical Technology (FE), Mumbai University, 2011 course. Etc.

That’s what I mean, when I use the phrase the “local” text-books.

I certainly don’t mean the SI Units editions of American texts, or the Indian Standards-adapted editions of reputed texts (such as, say, Shigley’s on design or Thomson and Dahleh’s on vibrations). I don’t mean the inexpensive Indian editions of foreign texts (such as those by Pearson, Wiley, ELBS, etc.) I also don’t mean the text-books written by the well-known Indian authors working right in India (such as those by IIT professors, and published by, say, Universities Press, Narosa, or PHI). I don’t even mean the more general text-books written for Indian universities and/or the AMIE examinations (such as those by S. Chand, Khanna, CBS, etc.). When I say “local” text-books, I specifically mean the books of the kind mentioned above.

Undergraduate students in Pune and Mumbai these days refer only to these local books.

They (really) don’t even bother to touch a good reference text, even if it’s available on the college library shelf.

In contrast, in our times, the problem was, we simply didn’t have the “foreign authors'” texts available to us—not always even in the COEP library. In those days, sometimes, such books happened to be too expensive, even for COEP’s library. And, even back then, Shahani’s text-books anyway were available. But at least, they didn’t cater to only the Pune university (they would list problems from universities as far flung as Madras, Gorakhpur, Agra, Allahabad, etc.) And, in fact, these books were generally looked down upon. Even by the students themselves.

The contrast to today’s situation is too glaring. Naturally, professors sometimes do end up saying the title line with a tone of exasperation.

Yes, I used to sometimes say that line myself, of course with sarcasm, when I taught in the late ’80s in the Pune of those days. (The situation back then was not so acute.) Almost as if by habit, I also repeated the line when I more recently taught a course at COEP (2009, FEM). However, observing students, somehow, my line had somehow begun to lose that cutting edge it once had. First, at COEP, I had the freedom to design this course (on FEM), and they did buy at least Logan and/or Cook. (Even if I was distributing my PDF notes.) And, there was something else to it, too. I somehow got a vague feel that it somehow wouldn’t be fully right to blame students (I mean COEP students in general). However, my COEP stint was only for one semester, only for one course, and only as a visiting faculty. So, the vague feel simply remained what it was—just a vague feel.

Then, recently in 2014, when I began teaching at a private engineering college in Mumbai, I once again heard this line from the other professors. And, I used it myself too. With the usual sarcasm. I did that perhaps for the most part of my first semester there.

However, some way down the line, I once again got that vague feel that, may be, something was “wrong” somewhere, even here, in Mumbai: these kids really were trying to be sincere, and yet, for some reason unknown to me, they still wouldn’t at all refer to good texts.

This is an aside, but I can tell you that it’s very easy to read the faces of the insincere people, esp. when they are young. There are some insincere students too. But, at least going by my own experience, they are in a minority. (It is a headache-some minority. Yet, by numerical magnitude alone, it certainly is in a small minority.) I am not saying this to be politically correct, or to win points from students. What I said is the factual case. In fact, my experience is that when it comes to in-sincerity, parents easily outperform their children. May be because, the specific parents that we mostly end up seeing in college are those whose kids have some problem—low attendance, fee payments, other issues, etc. The parents with whom we get to interact really well, thus, happens to be a self-selected sub-group. They aren’t necessarily representative of all parents… Yet, I am also sure that that’s not the real reason why I think parents can easily be more insincere. I think the real reason is that, at their age, the kids are actually unable to fake too much. It’s far easier for them to be sincere than to be a fake and still get away with it. They just can’t manage it, regardless of their desire. And, looking at it in a better light, I here remember what Ayn Rand had once said in a somewhat similar context, “one doesn’t start out in life by spitting on one’s own face—it’s not in the essential nature of life” or something like that. (Off-hand, I think, it was in the preface to the 25th anniversity edition of The Fountainhead.) So, the kids, by and large, are sincere. … By the time they themselves become parents—well, let’s leave that story right here. (We need them to make all those fee payments, anyway…)

So, coming back to the main thread, I would anyway generally chat with the students, and so, I started asking, esp. some of the more talkative students, the reason why they might not be referring to good texts. After all, in my lectures, I would try to provide very specific references: specific section numbers or even page numbers, in a specific edition of a specific reference text. (And these texts were available in the college library.) Why, I once had even distributed an original research paper. (It was Griffth’s seminal 1920 paper starting the field of fracture mechanics. Griffith’s argument here is rather conceptual, and the paper has surprisingly very little maths. Whatever the maths there is, it is very easily accessible to the SE students, too.)

The result of my initial attempts to understand the reason (why students don’t read good texts) was not so encouraging. The talkative students began dropping by my cabin once in a while, asking which section to use while answering a certain assignment question or so. However, they still only rarely used those better texts, when it came to actually completing their assignments. And, in the unit tests (and in the final end-sem examination), they invariably ended up quoting only the local text books (whether verbatim or not).

The exercise was, thus, futile. And yet, the students’ sincerity—at least the sincerity of their desire, as in contrast to their actions—could not be put in doubt.

So, I took it as a challenge. I set this as a problem for myself: To discover the main reason(s) why my students don’t refer to good text-books. The real underlying reason(s), regardless of whatever they otherwise did to impress me.

It took a while for me to crack the problem. I would anyway generally chat with them, enquiring where they lived, what their parents did, about their friends and brothers and sisters, etc. In addition, I would also observe, now with this new challenge somewhere at the back of my mind, how they behaved (or rushed around) in college: in hallways, labs, canteen, college ground, even at the bus-stop just outside the college, etc.

…Finally, I got it! At least one reason, a main reason, a systemic reason that applied even to those who otherwise were good, talented, curious, or just plain sincere.

As soon as I discovered the reason, I shared it with every one. In fact, I first shared it with my students, before I did with my colleagues or superiors. The answer lies in an Excel spreadsheet, here [^]. (It actually was created in OpenOffice Calc, on Windows 7.)  Go ahead, download it, and play with it a bit. The embedded formulae should be self-explanatory.

The numbers used in the spreadsheet may differ. The specific numbers I have used in the spreadsheet refer to my estimates while working at a college in Mumbai, in particular, in Navi Mumbai. In Mumbai, the time lost commuting is really an issue. If a student lives in Thane or Andheri and attends a college in Navi Mumbai, he easily spends about 3–4 hours in the daily commute (home->bus->railway station/second bus/metro–>another bus or six-seater, all of it taking about 1.5 hours one way, or more). In Pune, the situation is much more heterogeneous. One student could be spending 3 hours commuting both ways (think: from Nigdi to VIT) whereas some other student could be just happily walking to the college campus (think: Paud Phata residents, and MIT). It all depends. In Pune, many students would be using two-wheelers. In any case, for a professor, the only practical guideline for the entire class that he can at all use, would have to be statistical in nature. So, it’s the class average for the daily commute time that matters. For Mumbai in general, it could be 2–3 hours, for Pune students, it could be, say, between 1 to 2 hours (both ways put together).

So Pune is a bit easier on students. In contrast, for many of my Mumbai students, the situation was bad (or even very bad), and they were trying hard (or very hard) to make the best of it. It must have been at least a bit frustrating to them when professors like me, on the top of everything, were demanding making references to good foreign texts, and openly using a sarcastic tone—even if generously laced with humor—if they didn’t. It must have been frustrating to at least 40–60% of them. (The number is my estimate of those who were genuinely interested in referring to good books, even if only for the better-drawn and colorful diagrams, photographs, and also mathematical proofs that came without errors or without arbitrary replacement of \partial by d.)

And why do I say that it must have been frustrating? Why didn’t I say it might have been frustrating?

Because, I cannot ever forget that look of that incredibly honest appreciation which slowly appeared on all their faces (including the faces of the “back-benchers”), as I shared my discovery in detail with them.

* * * * *   * * * * *   * * * * *

How about your college? Your case?

Do you have the time to read good, lengthy, or conceptually clarifying “reference” texts? Say, Timoshenko (app. mech. and strength of materials); Shames, or Popov (strength of materials); White, or Fox & McDonald, or Som & Biswas (Fluid Mech.); Holman, or Nag, or Sukhatme (Heat Transfer)?

And, if you do, do you spend time reading these texts? If yes, did you complete them (I mean only the portion relevant to the syllabus) in the same semester that you were learning or teaching the subject for the first time? Could you have?

And yes, in my last sentence, I have included “teaching” too. My questions are directed to the professors too. In fact, my questions are directed, first and foremost, only at them.

After all, it is the professors—or at least some of us—who are in the driver’s seat here; the students never are. It is the professors who (i) design the syllabii as well as the examination schemes (including the number of tests to have and their nature), (ii) decide on the number of assignments (and leave no opportunity to level criticism in our capacity as External Examiners, if the length or difficulty of an assignment falls short), (iii) decide on the course text-books (and take due care to list more than 5 prescribed text-books, and more than 10 reference books per course) (iv) decide on the student attendance criteria in detail, up to the individual course level, and report on the defaulting students (and follow through with the meetings with their parents) every two weeks or at least once a month, (v) set the examination papers according to the established pattern—after all, it’s only us who is going to check the papers!, (vi) sometimes, write those local text-books!, and (vii) also keep the expectation that students should somehow show in their final university examination answer books, some evidence of having gone through some good, thick, reference texts, too. Whether we ourselves had managed to do that during our own UG years or not!

And, yes, I also want the IIX professors to ponder over these matters. All their students enjoy a fully residential program; these kids from these private engineering colleges mostly don’t. They at IIXs always get to design all their course syllabii and decide on the examination patterns, and they even get to enjoy the sole responsibility to grade their students. The possibility of adopting a marks normalization scheme, after the examination, always lies at hand, with them, just in case a topic took too long with a certain class or so… Are they then being reasonable in their request demand that the students of these “other” engineering colleges in India be well-read enough, at least by the time the students join them at IIXs for ME/MTech studies?

As to me, no, as I indicated in my earlier posts, while being a professor, I could not always find the time to do that—referring to good text-books. I tried, but basically my situation wasn’t much different from that of my students—we both were short on the available time. So, I didn’t always succeed.

[As to my own UG years, it was mixed: I did hunt for months, and got my hands on, the books like Reed-Hill, White, Holman, etc. However, I would be dishonest if I claimed that it was right during my UG years that I had got whatever I did, from books like these. In my case, the learning continued for years. Yes, I even bought and religiously studied once again even Thomas & Finney’s calculus, when I was in my PhD program at UAB. Despite my attempts during the UG years, I really cannot ascribe a large part, or even a significant part of my current understanding to my UG years. Your case may be different; I was just narrating my own experience.]

… And, as far making references to good books goes, now that I do have time at my hand these days, there is another problem: I don’t know what course in particular I will be teaching the next semester, and where—or for that matter, whether some college will even hire me in the first place, or not.

So, I end up “wasting” my time writing blog posts like this one. Thus, I, too, end up not touching a good reference text!

* * * * *   * * * * *   * * * * *

A Song I Like:

(Hindi) “aane waalaa pal, jaane waalaa hai…”
Lyrics: Gulzaar
Singer: Kishor Kumar
Music: R. D. Burman

[I will go over this post once again, editing it, and may be adding a bit here and there. Done. This post is already too long. So, I will write another post—a brief one—to jot down some tips to make the best possible use of the student’s time—including my suggestions to the engineering colleges as to what they can do to help the students. Also, my take on whether the system as noted above has diluted the quality of education or not—esp. as in contrast to what we had as UG students at COEP more than three decades ago.]



I am out of job, again

I am out of the Y.T. Institute of Engineering and Technology, Karjat, near Mumbai (YTIET for short).

And thus, out of any job, once again.

That way, at YTIET, things were going pretty smoothly for me. This semester, I was expected to teach a course on Advanced Stress Analysis to ME (Mech. Engg.) students. I had also begun work on guiding a couple of students of ME in Mech. Engg. Actually, the college had even put up a new, comfortably big, and airy cabin for me—by installing a partition in a much bigger room, in our department.

However, surprisingly, no official email ID or Internet connections were provided to me. These were, in a way, more important to me. They were urgently necessary so that I, together with my ME student, could have done the necessary literature search, and used the affiliation with YTIET, to submit the abstract of our planned paper to an upcoming international conference in time.

And, assigning official email IDs is such a routine thing.

My HoD had formally forwarded my request, and informally made enquiries through peons several times over, but to no effect. Finally, my HoD sent a Lab Assistant to the IT services office of the college, and then, we were advised that I had to personally go and seek permission from “HR” before an email ID for me could be set up.

There also were delays in setting up a bank account, in my case—as pointed out by other professors. They, too, had advised me to go and check with the HR.

Finally, with the new semester actually getting running, there were quite a few email messages that were routed to the faculty members only via the internal official email groups. Since I didn’t have an ID, they never reached me.

So, on August 8th, I went to the HR department, and generally asked for an explanation about the lack of provision of an email ID. I received replies from the junior-most HR folks that were, at best, say, indifferent. They simply didn’t say anything about when the email ID would be provided. As to the back account, it was when I brought up the matter that they asked me whether I had submitted a set of the copies of my degree certificates, also to their accounts department—which, physically, is just downstairs. Note, by that time, I had already submitted three sets of all my documents to various departments in the same building. In fact, I had submitted my first complete set to these very same HR ladies, right in the first/second week of July. Later on, in the third week of July, when the same ladies had asked me for one more set, since I did not have any additional Xerox sets ready with me, I had borrowed my file from these same HR people, took a flight downstairs, got five copies made at the Xerox machines right there (in the same building) within 10 minutes, came back, handed over my file to them (from which these Xerox copies were made), and then, even enquired them if by any chance any more sets were needed now that I had these extra sets in hand. The answer, then, was a plain “no.” At no point of time in six weeks had they (or anyone else) ever advised me to submit an extra set also to their accounts department. And, still, now, they felt free to ask me if I had submitted an additional set (in all, it would have been the fourth set) to one of the offices just downstairs!

Naturally, I got angry with them. As far as is possible, you should not make even a student to run from the pillar to the post, first asking him to get just a single Xerox set, and then yet another set again later, and then, one more set yet again, whenever a whim to do so descends on you. You should not. Not even for a student. And, to a Full Professor like me, when he has already submitted three sets, you must not.

So I asked them, angrily, if they could not simply get another set of Xerox copies made from the file which anyway was with them, and forward it to the different departments in their office as necessary?

… Yes, angry, I sure was, but I was not as angry as I otherwise have been in many other places of work (while still keeping my job, both in the US and in India, both in industry and in academia).

But the (Marathi word that is favorite of newspapers like “SakaaL”) “taruNaai” these days does seem to be different.

The above incident led to a more senior guy from HR, one Mr. Mayur Kurade, immediately sending messages through three different peons to me, to the effect that I should go and see him, that afternoon. (Just after the above incident, I had stepped out for lunch.)

When I went to see him, apparently, Mr. Kurade was angry, too. And, more. Smug. He seemed to have made up his mind to show me who wielded the real power. That led to an argument. … Among the many other funny things he said, he had asked me to write an email to the chairman about it. I had taken down the chairman’s email ID, but had added, plainly, that I may not write directly to the Chairman for such a simple thing. Not so soon, anyway. All this happened on August 8th. Apparently, the same day, Mr. Kurade himself wrote an email to the Chairman.

The net result was that, to the apparent astonishment of all, including my academic colleagues and superiors, on the late evening of August 10th, I was asked to stop going to college by the Chairman of this group of institutions. (August 9th was the Id holiday.)

A decision like this was communicated to me late on the evening of August 10th, by a phone call—neither an email nor a letter. It was communicated not by my HoD, nor the Acting Principal, nor the Campus Director (who is Chairmain’s younger brother), nor the Chairman himself, but by an HR manager—not Mr. Kurade, but someone other than him, someone who is a bit more senior to him—one Mr. Ramakant Tare.  Mr. Tare, it turned out, had no idea as to exactly what had transpired with Mr. Kurade and the more junior ladies in the HR on August 8th. (On that afternoon, he had gone out of campus for some work—else, he would have been the first person I would have gone to ask about my email IDs.)

Now, my receiving this call of termination of my services happened to be the late evening of the same day (August 10th) on which, right in the morning, we had an inaugural function for welcoming the ME students this year. I was very much a part of the proceedings of that function in the morning and afternoon. Indeed, along with all the other professors teaching the ME programs, I was even officially introduced to the new students in the auditorium, mentioning the course that I will be teaching them.

BTW, the college also got its new Principal on the morning of the same day (August 10th). Indeed, I was asked to accompany all the HoDs at the time that the new Principal officially took charge. I thus was the only non-HoD person present for the occasion; it probably was a gesture of respect given to my seniority by my academic colleagues and superiors.

Actually, in the afternoon of August 10th, I even had a lunch with all the HoDs of this college. Though the inaugural function served snacks, they had bought tiffins from home as usual, and decided to have lunch together in my HoD’s cabin. As I dropped by in his room for something else, I was immediately called over by them to join them for lunch—nay, they insisted upon it. I even narrated the HR incident to tell, and they laughed at it, mentioning someone from the Admin side (no longer with them) with whom I probably would have had daily fights. Some of them even expressed satisfaction that I had taken the HR to the task over their failure to provide such simple things. The atmosphere, there, in the afternoon of August 10th was, thus, as usual: informal, friendly, and perhaps also a bit respectful.

Thus, I believe, there very probably was not even a verbal hint let alone any more persistent form of communication about this decision being conveyed in advance to any of my superiors—a decision that already had been taken, and a decision that was unknown even to the HoDs, right until the evening of August 10th. In fact, the decision was not known even to a Principal of an adjacent engineering college belonging to the same group of institutions. (The group has three engineering colleges, all near Karjat.) I called him late at night of August 10th to keep him informed of the decision;  he too was completely taken in by surprise.

Clearly, the HR people in the know (i.e., mainly, Mr. Mayur Kurade) had not bothered to let any of the HoDs or principals know in advance—else they could have at least prevented the embarrassment of having me in the inaugural function on the same day that I would be fired!

Alright… There still are a few remaining things that I would like to note before closing. First, right the next working day (i.e. on Monday, August 12th), they did pay me my salary up to that date in full, and also immediately issued me my relieving certificate. They can be super-efficient when the need to do so arises. Second, the more senior HR/Admin person (i.e. Mr. Ramakant Tare) listened to “my side” (i.e. what all I knew) completely, and after that, his expressions changed visibly. He seemed genuinely regretful about the whole thing—and, as is usual in such instances, expressing his helplessness. Third, I did have some email communication with the Chairman later on (i.e. after August 12th).

All in all, I am happy to note that I have come out of that place—I mean, the SES group of institutions. Not necessarily Karjat, though!

* * * * *   * * * * *   * * * * *

(BTW, Mr. Kurade has an MBA from an institute belonging to the DY Patil group. He also carries a LinkedIn Recommendation (LOL!) from a British manager. As to the Chairman: While in YTIET, I had come to know that he happens to be some 3–4 years junior to me by age. Later on, I gathered from his (the then existing) LinkedIn profile that this guy did his education (“Bachelor of Medicine, Bachelor of Surgery (M.B.B.S.), Post Graduate In Radiology, Medicine Grade: First”) from “Modern High-School, Pune.”)

* * * * *   * * * * *   * * * * *

Obviously, I am on the lookout for a suitable job. I also have a couple of more updates to make at this blog, may be right today. All my updates were pending because I was busy moving all my stuff (as you know, mainly the books) back to Pune. I am done with it now.

* * * * *   * * * * *   * * * * *

A Song I Like:

(Marathi) “naa naa naa naa, naa naa naa naa, naahee naahee naahee ga_,
ho… aataa punhaa, majasi yeNe naahi ga_…”
Music: Manas Mukherjee
Singer: Usha Mangeshkar
Lyrics: Shanta Shelke