Is something like a re-discovery of the same thing by the same person possible?

Yes, we continue to remain very busy.

However, in spite of all that busy-ness, in whatever spare time I have [in the evenings, sometimes at nights, why, even on early mornings [which is quite unlike me, come to think of it!]], I cannot help but “think” in a bit “relaxed” [actually, abstract] manner [and by “thinking,” I mean: musing, surmising, etc.] about… about what else but: QM!

So, I’ve been doing that. Sort of like, relaxed distant wonderings about QM…

Idle musings like that are very helpful. But they also carry a certain danger: it is easy to begin to believe your own story, even if the story itself is not being borne by well-established equations (i.e. by physic-al evidence).

But keeping that part aside, and thus coming to the title question: Is it possible that the same person makes the same discovery twice?

It may be difficult to believe so, but I… I seemed to have managed to have pulled precisely such a trick.

Of course, the “discovery” in question is, relatively speaking, only a part of of the whole story, and not the whole story itself. Still, I do think that I had discovered a certain important part of a conclusion about QM a while ago, and then, later on, had completely forgotten about it, and then, in a slow, patient process, I seem now to have worked inch-by-inch to reach precisely the same old conclusion.

In short, I have re-discovered my own (unpublished) conclusion. The original discovery was may be in the first half of this calendar year. (I might have even made a hand-written note about it, I need to look up my hand-written notes.)

Now, about the conclusion itself. … I don’t know how to put it best, but I seem to have reached the conclusion that the postulates of quantum mechanics [^], say as stated by Dirac and von Neumann [^], have been conceptualized inconsistently.

Please note the issue and the statement I am making, carefully. As you know, more than 9 interpretations of QM [^][^][^] have been acknowledged right in the mainstream studies of QM [read: University courses] themselves. Yet, none of these interpretations, as far as I know, goes on to actually challenge the quantum mechanical formalism itself. They all do accept the postulates just as presented (say by Dirac and von Neumann, the two “mathematicians” among the physicists).

Coming to me, my positions: I, too, used to say exactly the same thing. I used to say that I agree with the quantum postulates themselves. My position was that the conceptual aspects of the theory—at least all of them— are missing, and so, these need to be supplied, and if the need be, these also need to be expanded.

But, as far as the postulates themselves go, mine used to be the same position as that in the mainstream.

Until this morning.

Then, this morning, I came to realize that I have “re-discovered,” (i.e. independently discovered for the second time), that I actually should not be buying into the quantum postulates just as stated; that I should be saying that there are theoretical/conceptual errors/misconceptions/misrepresentations woven-in right in the very process of formalization which produced these postulates.

Since I think that I should be saying so, consider that, with this blog post, I have said so.

Just one more thing: the above doesn’t mean that I don’t accept Schrodinger’s equation. I do. In fact, I now seem to embrace Schrodinger’s equation with even more enthusiasm than I have ever done before. I think it’s a very ingenious and a very beautiful equation.

A Song I Like:

(Hindi) “tum jo hue mere humsafar”
Music: O. P. Nayyar
Singers: Geeta Dutt and Mohammad Rafi
Lyrics: Majrooh Sultanpuri

Update on 2017.10.14 23:57 IST: Streamlined a bit, as usual.



“Measure for Measure”—a pop-sci video on QM

This post is about a video on QM for the layman. The title of the video is: “Measure for Measure: Quantum Physics and Reality” [^]. It is also available on YouTube, here [^].

I don’t recall precisely where on the ‘net I saw the video being mentioned. Anyway, even though its running time is 01:38:43 (i.e. 1 hour, 38 minutes, making it something like a full-length feature film), I still went ahead, downloaded it and watched it in full. (Yes, I am that interested in QM!)

The video was shot live at an event called “World Science Festival.” I didn’t know about it beforehand, but here is the Wiki on the festival [^], and here is the organizer’s site [^].

The event in the video is something like a panel discussion done on stage, in front of a live audience, by four professors of physics/philosophy. … Actually five, including the moderator.

Brian Greene of Columbia [^] is the moderator. (Apparently, he co-founded the World Science Festival.) The discussion panel itself consists of: (i) David Albert of Columbia [^]. He speaks like a philosopher but seems inclined towards a specific speculative theory of QM, viz. the GRW theory. (He has that peculiar, nasal, New York accent… Reminds you of Dr. Harry Binswanger—I mean, by the accent.) (ii) Sheldon Goldstein of Rutgers [^]. He is a Bohmian, out and out. (iii) Sean Carroll of CalTech [^]. At least in the branch of the infinity of the universes in which this video unfolds, he acts 100% deterministically as an Everettian. (iv) Ruediger Schack of Royal Holloway (the spelling is correct) [^]. I perceive him as a QBist; guess you would, too.

Though the video is something like a panel discussion, it does not begin right away with dudes sitting on chairs and talking to each other. Even before the panel itself assembles on the stage, there is a racy introduction to the quantum riddles, mainly on the wave-particle duality, presented by the moderator himself. (Prof. Greene would easily make for a competent TV evangelist.) This part runs for some 20 minutes or so. Then, even once the panel discussion is in progress, it is sometimes interwoven with a few short visualizations/animations that try to convey the essential ideas of each of the above viewpoints.

I of course don’t agree with any one of these approaches—but then, that is an entirely different story.

Coming back to the video, yes, I do want to recommend it to you. The individual presentations as well as the panel discussions (and comments) are done pretty well, in an engaging and informal way. I did enjoy watching it.

The parts which I perhaps appreciated the most were (i) the comment (near the end) by David Albert, between 01:24:19–01:28:02, esp. near 1:27:20 (“small potatoes”) and, (ii) soon later, another question by Brian Greene and another answer by David Albert, between 01:33:26–01:34:30.

In this second comment, David Albert notes that “the serious discussions of [the foundational issues of QM] … only got started 20 years ago,” even though the questions themselves do go back to about 100 years ago.

That is so true.

The video was recorded recently. About 20 years ago means: from about mid-1990s onwards. Thus, it is only from mid-1990s, Albert observes, that the research atmosphere concerning the foundational issues of QM has changed—he means for the better. I think that is true. Very true.

For instance, when I was in UAB (1990–93), the resistance to attempting even just a small variation to the entrenched mainstream view (which means, the Copenhagen interpretation (CI for short)) was so enormous and all pervading, I mean even in the US/Europe, that I was dead sure that a graduate student like me would never be able to get his nascent ideas on QM published, ever. It therefore came as a big (and a very joyous) surprise to me when my papers on QM actually got accepted (in 2005). … Yes, the attitudes of physicists have changed. Anyway, my point here is, the mainstream view used to be so entrenched back then—just about 20 years ago. The Copenhagen interpretation still was the ruling dogma, those days. Therefore, that remark by Prof. Albert does carry some definite truth.

Prof. Albert’s observation also prompts me to pose a question to you.

What could be the broad social, cultural, technological, economic, or philosophic reasons behind the fact that people (researchers, graduate students) these days don’t feel the same kind of pressure in pursuing new ideas in the field of Foundations of QM? Is the relatively greater ease of publishing papers in foundations of QM, in your opinion, an indication of some negative trends in the culture? Does it show a lowering of the editorial standards? Or is there something positive about this change? Why has it become easier to discuss foundations of QM? What do you think?

I do have my own guess about it, and I would sure like to share it with you. But before I do that, I would very much like to hear from you.

Any guesses? What could be the reason(s) why the serious discussions on foundations of QM might have begun to occur much more freely only after mid-1990s—even though the questions had been raised as early as in 1920s (or earlier)?

Over to you.

Greetings in advance for the Republic Day. I [^] am still jobless.



The Infosys Prizes, 2015

I realized that it was the end of November the other day, and it somehow struck me that I should check out if there has been any news on the Infosys prizes for this year. I vaguely recalled that they make the yearly announcements sometime in the last quarter of a year.

Turns out that, although academic bloggers whose blogs I usually check out had not highlighted this news, the prizes had already been announced right in mid-November [^].

It also turns out also that, yes, I “know”—i.e., have in-person chatted (exactly once) with—one of the recipients. I mean Professor Dr. Umesh Waghmare, who received this year’s award for Engineering Sciences [^]. I had run into him in an informal conference once, and have written about it in a recent post, here [^].

Dr. Waghmare is a very good choice, if you ask me. His work is very neat—I mean both the ideas which he picks out to work on, and the execution on them.

I still remember his presentation at that informal conference (where I chatted with him). He had talked about a (seemingly) very simple idea, related to graphene [^]—its buckling.

Here is my highly dumbed down version of that work by Waghmare and co-authors. (It’s dumbed down a lot—Waghmare et al’s work was on buckling, not bending. But it’s OK; this is just a blog, and guess I have a pretty general sort of a “general readership” here.)

Bending, in general, sets up a combination of tensile and compressive stresses, which results in the setting up of a bending moment within a beam or a plate. All engineers (except possibly for the “soft” branches like CS and IT) study bending quite early in their undergraduate program, typically in the second year. So, I need not explain its analysis in detail. In fact, in this post, I will write only a common-sense level description of the issue. For technical details, look up the Wiki articles on bending [^] and buckling [^] or Prof. Bower’s book [^].

Assuming you are not an engineer, you can always take a longish rubber eraser, hold it so that its longest edge is horizontal, and then bend it with a twist of your fingers. If the bent shape is like an inverted ‘U’, then, the inner (bottom) surface has got compressed, and the outer (top) surface has got stretched. Since compression and tension are opposite in nature, and since the eraser is a continuous body of a finite height, it is easy to see that there has to be a continuous surface within the volume of the eraser, some half-way through its height, where there can be no stresses. That’s because, the stresses change sign in going from the compressive stress at the bottom surface to the tensile stresses on the top surface. For simplicity of mathematics, this problem is modeled as a 1D (line) element, and therefore, in elasticity theory, this actual 2D surface is referred to as the neutral axis (i.e. a line).

The deformation of the eraser is elastic, which means that it remains in the bent state only so long as you are applying a bending “force” to it (actually, it’s a moment of a force).

The classical theory of bending allows you to relate the curvature of the beam, and the bending moment applied to it. Thus, knowing bending moment (or the applied forces), you can tell how much the eraser should bend. Or, knowing how much the eraser has curved, you can tell how big a pair of fforces would have to be applied to its ends. The theory works pretty well; it forms of the basis of how most buildings are designed anyway.

So far, so good. What happens if you bend, not an eraser, but a graphene sheet?

The peculiarity of graphene is that it is a single atom-thick sheet of carbon atoms. Your usual eraser contains billions and billions of layers of atoms through its thickness. In contrast, the thickness of a graphene sheet is entirely accounted for by the finite size of the single layer of atoms. And, it is found that unlike thin paper, the graphen sheet, even if it is the the most extreme case of a thin sheet, actually does offer a good resistance to bending. How do you explain that?

The naive expectation is that something related to the interatomic bonding within this single layer must, somehow, produce both the compressive and tensile stresses—and the systematic variation from the locally tensile to the locally compressive state as we go through this thickness.

Now, at the scale of single atoms, quantum mechanical effects obviously are dominant. Thus, you have to consider those electronic orbitals setting up the bond. A shift in the density of the single layer of orbitals should correspond to the stresses and strains in the classical mechanics of beams and plates.

What Waghmare related at that conference was a very interesting bit.

He calculated the stresses as predicted by (in my words) the changed local density of the orbitals, and found that the forces predicted this way are way smaller than the experimentally reported values for graphene sheets. In other words, the actual graphene is much stiffer than what the naive quantum mechanics-based model shows—even if the model considers those electronic orbitals. What is the source of this additional stiffness?

He then showed a more detailed calculation (i.e. a simulation), and found that the additional stiffness comes from a quantum-mechanical interaction between the portions of the atomic orbitals that go off transverse to the plane of the graphene sheet.

Thus, suppose a graphene sheet is initially held horizontally, and then bent to form an inverted U-like curvature. According to Waghmare and co-authros, you now have to consider not just the orbital cloud between the atoms (i.e. the cloud lying in the same plane as the graphene sheet) but also the orbital “petals” that shoot vertically off the plane of the graphene. Such petals are attached to nucleus of each C atom; they are a part of the electronic (or orbital) structure of the carbon atoms in the graphene sheet.

In other words, the simplest engineering sketch for the graphene sheet, as drawn in the front view, wouldn’t look like a thin horizontal line; it would also have these small vertical “pins” at the site of each carbon atom, overall giving it an appearance rather like a fish-bone.

What happens when you bend the graphene sheet is that on the compression side, the orbital clouds for these vertical petals run into each other. Now, you know that an orbital cloud can be loosely taken as the electronic charge density, and that the like charges (e.g. the negatively charged electrons) repel each other. This inter-electronic repulsive force tends to oppose the bending action. Thus, it is the petals’ contribution which accounts for the additional stiffness of the graphene sheet.

I don’t know whether this result was already known to the scientific community back then in 2010 or not, but in any case, it was a very early analysis of bending of graphene. Further, as far as I could tell, the quality of Waghmare’s calculations and simulations was very definitely superlative. … You work in a field (say computational modeling) for some time, and you just develop a “nose” of sorts, that allows you to “smell” a superlative calculation from an average one. Particularly so, if your own skills on the calculations side are rather on the average, as happens to be the case with me. (My strengths are in conceptual and computational sides, but not on the mathematical side.) …

So, all in all, it’s a very well deserved prize. Congratulations, Dr. Waghmare!


A Song I Like:

(The so-called “fusion” music) “Jaisalmer”
Artists: Rahul Sharma (Santoor) and Richard Clayderman (Piano)
Album: Confluence

[As usual, may be one more editing pass…]


The Bhatnagar prizes 2015

The Bhatnagar prizes [^] for 2015 have been announced [(.PDF) ^]. The selections seem to be, as usual, the “safe” ones. So there can’t be much to comment on, on that count.

So, let me try to squeeze out something interesting and relevant from that bit of the news.

As far as I am concerned, the first interesting bit is this: I “know”—i.e. have run into and exchanged a few words with—one of the awardees. Exactly once, at a conference. The fellow in question is Dr. Mandar Deshmukh (2015, Physical Sciences). From the presentation he made at that conference, it was quite clear (at least to me) that he was doing some neat science. While making his presentation, he had assumed that informal and abstract air which by now has become typical for the relatively younger IIT Bombay graduates. I do like this change in them. Earlier, i.e. in my times and earlier, they used to be far too arrogant, pompous, or self-assuming. Even in their informal presentations. Important to me, Deshmukh carried the same air of informality (of a kind of friendliness, almost) during the in-person chat that I had with him on the side-lines during the buffet lunch. Why, he even casually asked me (as others) to “drop by [his] lab and have a look at the equipment any time,” adding that it was “interesting,” with a glint in his eye. Hmmm… Turns out that he has continued doing “interesting” things. (This conference was in 2009 or 2010.) As far as I am concerned, this selection seems quite right. So, congratulations, Dr. Deshmukh!

The second interesting bit is that Deshmukh was the second person present at that conference with who I had chatted during lunch and who eventually got the Bhatnagar award. The first person was Dr. Umesh Waghmare. (Yet another younger IIT Bombay alumnus.)

To go on to the third interesting bit, let me note that it was not a very “official” kind of a conference. It was just a symposium arranged to honor Professor Dilip Kanhere, on the occasion of his retirement as a Professor of Physics in the (now S. P.) University of Pune. There were no brownie points to be scored from this conference; people got together only out of respect for the retiring professor—and of course, out of the love of the research topics. Important to note: People had dropped by from as far places as the USA, Germany, Sweden, etc. (I came to know Prof. Kanhere through Web searches; he had just founded the Center for Modeling and Simulation; I was interesting in anything combining computation and physics. I approached him; he allowed me to attend his classes and generally roam around in the CMS for a while.)

So, the interesting bit is the knack that Prof. Kanhere evidently has to gather together some talented (and/or interesting) people. [I don’t mean to refer to me here.] I don’t know why not every professor succeeds doing that. But some professors do have this knack. Talented folks somehow “smell” such people and almost as if “by default” gather around them. Consider Kanhere’s PhD students (or research associates), and compare them to any randomly selected PhD from any department at the S. P. University of Pune during the same time; Kanhere’s students (and associates) stand out. The current director of CMS, Anjali Kshirsagar, is his PhD student; many others have had post-docs at good institutes abroad, which, incidentally, is a good benchmark for Indian universities (other than the IIXs). This point is important.

Even while working within the “parameters” of this third-class university (I mean the S. P. University of Pune), Kanhere managed to inculcate the right kind of intellectual spirit, and culture in his group, why, even some simple manners and rules of etiquette that researchers from the first-world almost always follow, and a normal guy in the S. P. University of Pune is blissfully (or more likely: arrogantly) unaware of. (Ditto for almost any other Indian university.) At least as far as I am concerned, if I know that if someone has been a student or post-doc with Prof. Kanhere, I immediately know that my emails will not only be read but also replied—and more important, its contents would be thought about before the reply is made (and perhaps also afterwards). It’s something like the atmosphere at iMechanica that Prof. Zhigang Suo has managed to create and maintain. How do some professors succeed doing such a thing regardless of the environment surrounding them? [Compare other blogging fora and iMechanica, on this count: the overall and general civility of the interaction present at iMechanica, combined with the informality. The fact that iMechanica is based at Harvard must have helped to a great extent, but this one factor alone doesn’t explain the outcome.]

So, how is a better atmosphere created? I have no idea. But the point especially relevant to us Indians is: it requires almost no money, almost no hard-work. (Well at least, not the futilely draining kind of a hard-work). And yet, only a few professors ever manage to accomplish that. It’s not everyone’s cup of tea. [As a professor myself, I am too new to know if I could manage to do that. But my point is: I would like to at least try.]

There is a value in such things. Kanhere’s students (and the people who had gathered for his retirement symposium) happened to be more or less the only people who (i) did not laugh at me when I said I am trying to derive a new view of QM, (ii) did not advise me to go read text-books within the first 5 minutes of my mentioning my published paper (or in the first email (if at all a reply came forth)), and (iii) did not try to avoid me the next time we ran into each other. Indeed, as far as the in-person interaction goes, the only people who have ever thoughtfully and informally commented on my QM ideas were Kanhere’s students. One of his students (then a professor himself) emphasized the complex number nature of the \Psi wave-function, and also brought home the fact that the name random variable is a misnomer, it actually being a function. Another student of his (again himself a professor) emphasized the conjugate nature of energy and time, not just of the momentum and position; see John Baez’ coverage here [^]. He also pointed out quantum chemistry to me; I didn’t know about it (“just substitute it in place of t; you will get it”). This, while people were busy saying to me that they won’t read a paper if it was about QM and written in MS Word, and that I should send the paper to a journal. (If they themselves couldn’t bother to even read the paper, why would they think that a journal could accept it? Blank-out. As far as they were concerned, the fact was that I myself had approached them, and so in that very act, I myself had put them in a higher, advising, position; they would therefore be generous in dispensing advice; the matter ended there as far as they were concerned.)

Reading the post in the plain, it’s impossible to convey what value mere “emphases” can be, because the issues are so generally well known. The point is: within the context of that particular discussion, within the context of that particular cluster of ideas, it’s just this one word emphasis that really gives you the clue. … It’s been more than five years since these comments, and I still marvel at how they got me out of my conceptual difficult spots with these off-hand but thoughtful remarks. (Their clarifications and even casually expressed emphases continue to help me, including during my recent-most brain-storming that I noted just yesterday in the previous post.) Why would only Kanhere’s students do that, despite the individual differences between them?

Thus, to use a cliche, some people manage to bring people together in such a way that 1 and 1 does not become 2; it becomes 11. How do they manage to do that? I have no idea.

How was it that Bohr managed to attract so many talented people to his institute? It is especially relevant to point out to Indians that this “institute,” when it was founded, had only one professor—Bohr himself—and a couple of other support staff. The visitors (like Heisenberg) would be lodged in a top-floor “room” (one having a low slanted roof), in the same building. Why, even as recently as in the late 1990s, the “University Department” at Utrecht had a faculty strength of less than 10—that’s roughly the time when Professor Gerard ‘t Hooft got his Nobel. The “Department” was that small; yet he would manage to attract talented folks from all over the world, i.e., even before the time that he got his Nobel. Sommerfeld had this same knack; look at the list of the PhDs he graduated and the post-docs he nurtured. For an example of the more recent times and from the US, look at the list of John Wheeler’s PhD students and post-docs: Richard Feynman and Kip Thorne count among his PhD students. Kip Thorne himself has been attracting an incredibly large pool of PhD students, post-docs and research associates.

Why do some people succeed attracting talent? Are there any lessons we can draw and learn? Let us not focus only on the Nobel laureates. Really speaking, winners of the Nobel prizes, or their mentors, do not make for a good, fitting example for us Indians. It cannot. Precisely because the achievement in question is so great, the difference in the perceived levels so large, that we Indians actually end up doing is to silently dismiss such instances away without any actual consideration. We cannot draw any lessons from them, for the simple reason that the very possibility of building the super-high-end intellectual hubs is completely surreal to us. [And, our friends and kins in the USA, esp. those in the San Francisco Bay Area, specialize in continually reminding us of the impossibility.]

So, let’s lower our bar a bit. I don’t mind doing that. But lowering the bar doesn’t mean we stop attempting. We can—and must—ask: is it possible to replicate, say, Professor Kanhere’s success, even if Wheeler’s example would be completely surreal to us? Is it possible to create an environment in which a prior PhD failure, esp. the one in engineering (and that too from a US university) runs into a physics professor, and says something using some stupid halting words which effectively convey: he wants to reformulate the foundations of QM. He says that, and still the physics professor doesn’t laugh it away right then and there? Is it possible to create this kind of an environment? Not just at an IIX, but also within the lowly S. P. University of Pune? Yes, it is possible; it has happened. … Is it possible that future Bhatnagar recipients flock together for what basically is just a “send-off” function of a non-IIX professor? Yes, it is possible; it has happened.

And, if such things are possible, then, the next question is: what precisely does it take to make it happen? to replicate it? I would like to know.

Over to you all.

[And, in the meanwhile, congratulations to the fresh Bhatnagar awardees once again, esp. Dr. Deshmukh.]

A Song I Like:
(Hindi) “yeh dil aur un ki nigahon ke saaye”
Music: Jaidev
Lyrics: Jan Nisar Akhtar
Singer: Lata Mangeshkar