Is something like a re-discovery of the same thing by the same person possible?

Yes, we continue to remain very busy.


However, in spite of all that busy-ness, in whatever spare time I have [in the evenings, sometimes at nights, why, even on early mornings [which is quite unlike me, come to think of it!]], I cannot help but “think” in a bit “relaxed” [actually, abstract] manner [and by “thinking,” I mean: musing, surmising, etc.] about… about what else but: QM!

So, I’ve been doing that. Sort of like, relaxed distant wonderings about QM…

Idle musings like that are very helpful. But they also carry a certain danger: it is easy to begin to believe your own story, even if the story itself is not being borne by well-established equations (i.e. by physic-al evidence).

But keeping that part aside, and thus coming to the title question: Is it possible that the same person makes the same discovery twice?

It may be difficult to believe so, but I… I seemed to have managed to have pulled precisely such a trick.

Of course, the “discovery” in question is, relatively speaking, only a part of of the whole story, and not the whole story itself. Still, I do think that I had discovered a certain important part of a conclusion about QM a while ago, and then, later on, had completely forgotten about it, and then, in a slow, patient process, I seem now to have worked inch-by-inch to reach precisely the same old conclusion.

In short, I have re-discovered my own (unpublished) conclusion. The original discovery was may be in the first half of this calendar year. (I might have even made a hand-written note about it, I need to look up my hand-written notes.)


Now, about the conclusion itself. … I don’t know how to put it best, but I seem to have reached the conclusion that the postulates of quantum mechanics [^], say as stated by Dirac and von Neumann [^], have been conceptualized inconsistently.

Please note the issue and the statement I am making, carefully. As you know, more than 9 interpretations of QM [^][^][^] have been acknowledged right in the mainstream studies of QM [read: University courses] themselves. Yet, none of these interpretations, as far as I know, goes on to actually challenge the quantum mechanical formalism itself. They all do accept the postulates just as presented (say by Dirac and von Neumann, the two “mathematicians” among the physicists).

Coming to me, my positions: I, too, used to say exactly the same thing. I used to say that I agree with the quantum postulates themselves. My position was that the conceptual aspects of the theory—at least all of them— are missing, and so, these need to be supplied, and if the need be, these also need to be expanded.

But, as far as the postulates themselves go, mine used to be the same position as that in the mainstream.

Until this morning.

Then, this morning, I came to realize that I have “re-discovered,” (i.e. independently discovered for the second time), that I actually should not be buying into the quantum postulates just as stated; that I should be saying that there are theoretical/conceptual errors/misconceptions/misrepresentations woven-in right in the very process of formalization which produced these postulates.

Since I think that I should be saying so, consider that, with this blog post, I have said so.


Just one more thing: the above doesn’t mean that I don’t accept Schrodinger’s equation. I do. In fact, I now seem to embrace Schrodinger’s equation with even more enthusiasm than I have ever done before. I think it’s a very ingenious and a very beautiful equation.


A Song I Like:

(Hindi) “tum jo hue mere humsafar”
Music: O. P. Nayyar
Singers: Geeta Dutt and Mohammad Rafi
Lyrics: Majrooh Sultanpuri


Update on 2017.10.14 23:57 IST: Streamlined a bit, as usual.

 

Advertisements

Off the blog. [“Matter” cannot act “where” it is not.]

I am going to go off the blogging activity in general, and this blog in most particular, for some time. [And, this time round, I will keep my promise.]


The reason is, I’ve just received the shipment of a book which I had ordered about a month ago. Though only about 300 pages in length, it’s going to take me weeks to complete. And, the book is gripping enough, and the issue important enough, that I am not going to let a mere blog or two—or the entire Internet—come in the way.


I had read it once, almost cover-to-cover, some 25 years ago, while I was a student in UAB.

Reading a book cover-to-cover—I mean: in-sequence, and by that I mean: starting from the front-cover and going through the pages in the same sequence as the one in which the book has been written, all the way to the back-cover—was quite odd a thing to have happened with me, at that time. It was quite unlike my usual habits whereby I am more or less always randomly jumping around in a book, even while reading one for the very first time.

But this book was different; it was extraordinarily engaging.

In fact, as I vividly remember, I had just idly picked up this book off a shelf from the Hill library of UAB, for a casual examination, had browsed it a bit, and then had began sampling some passage from nowhere in the middle of the book while standing in an library aisle. Then, some little time later, I was engrossed in reading it—with a folded elbow resting on the shelf, head turned down and resting against a shelf rack (due to a general weakness due to a physical hunger which I was ignoring [and I would have have to go home and cook something for myself; there was none to do that for me; and so, it was easy enough to ignore the hunger]). I don’t honestly remember how the pages turned. But I do remember that I must have already finished some 15-20 pages (all “in-the-order”!) before I even realized that I had been reading this book while still awkwardly resting against that shelf-rack. …

… I checked out the book, and once home [student dormitory], began reading it starting from the very first page. … I took time, days, perhaps weeks. But whatever the length of time that I did take, with this book, I didn’t have to jump around the pages.


The issue that the book dealt with was:

[Instantaneous] Action at a Distance.

The book in question was:

Hesse, Mary B. (1961) “Forces and Fields: The concept of Action at a Distance in the history of physics,” Philosophical Library, Edinburgh and New York.


It was the very first book I had found, I even today distinctly remember, in which someone—someone, anyone, other than me—had cared to think about the issues like the IAD, the concepts like fields and point particles—and had tried to trace their physical roots, to understand the physical origins behind these (and such) mathematical concepts. (And, had chosen to say “concepts” while meaning ones, rather than trying to hide behind poor substitute words like “ideas”, “experiences”, “issues”, “models”, etc.)

Twenty-five years later, I still remain hooked on to the topic. Despite having published a paper on IAD and diffusion [and yes, what the hell, I will say it: despite claiming a first in 200+ years in reference to this topic], I even today do find new things to think about, about this “kutty” [Original: IITM lingo; English translation: “small”] topic. And so, I keep returning to it and thinking about it. I still am able to gain new insights once in an odd while. … Indeed, my recent ‘net search on IAD (the one which led to Hesse and my buying the book) precisely was to see if someone had reported the conceptual [and of course, mathematical] observation which I have recently made, or not. [If too curious about it, the answer: looks like, none has.]


But now coming to Hesse’s writing style, let me quote a passage from one of her research papers. I ran into this paper only recently, last month (in July 2017), and it was while going through it that I happened [once again] to remember her book. Since I did have some money in hand, I did immediately decide to order my copy of this book.

Anyway, the paper I have in mind is this:

Hesse, Mary B. (1955) “Action at a Distance in Classical Physics,” Isis, Vol. 46, No. 4 (Dec., 1955), pp. 337–353, University of Chicago Press/The History of Science Society.

The paper (it has no abstract) begins thus:

The scholastic axiom that “matter cannot act where it is not” is one of the very general metaphysical principles found in science before the seventeenth century which retain their relevance for scientific theory even when the metaphysics itself has been discarded. Other such principles have been fruitful in the development of physics: for example, the “conservation of motion” stated by Descartes and Leibniz, which was generalized and given precision in the nineteenth century as the doctrine of the conservation of energy; …

Here is another passage, once again, from the same paper:

Now Faraday uses a terminology in speaking about the lines of force which is derived from the idea of a bundle of elastic strings stretched under tension from point to point of the field. Thus he speaks of “tension” and “the number of lines” cut by a body moving in the field. Remembering his discussion about contiguous particles of a dielectric medium, one must think of the strings as stretching from one particle of the medium to the next in a straight line, the distance between particles being so small that the line appears as a smooth curve. How seriously does he take this model? Certainly the bundle of elastic strings is nothing like those one can buy at the store. The “number of lines” does not refer to a definite number of discrete material entities, but to the amount of force exerted over a given area in the field. It would not make sense to assign points through which a line passes and points which are free from a line. The field of force is continuous.

See the flow of the writing? the authentic respect for the intellectual history, and yet, the overriding concern for having to reach a conclusion, a meaning? the appreciation for the subtle drama? the clarity of thought, of expression?

Well, these passages were from the paper, but the book itself, too, is similarly written.


Obviously, while I remain engaged in [re-]reading the book [after a gap of 25 years], don’t expect me to blog.

After all, even I cannot act “where” I am not.


A Song I Like:

[I thought a bit between this song and another song, one by R.D. Burman, Gulzar and Lata. In the end, it was this song which won out. As usual, in making my decision, the reference was exclusively made to the respective audio tracks. In fact, in the making of this decision, I happened to have also ignored even the excellent guitar pieces in this song, and the orchestration in general in both. The words and the tune were too well “fused” together in this song; that’s why. I do promise you to run the RD song once I return. In the meanwhile, I don’t at all mind keeping you guessing. Happy guessing!]

(Hindi) “bheegi bheegi…” [“bheege bheege lamhon kee bheegee bheegee yaadein…”]
Music and Lyrics: Kaushal S. Inamdar
Singer: Hamsika Iyer

[Minor additions/editing may follow tomorrow or so.]

 

Causality. And a bit miscellaneous.

0. I’ve been too busy in my day-job to write anything at any one of my blogs, but recently, a couple of things happened.


1. I wrote what I think is a “to read” (if not a “must read”) comment, concerning the important issue of causality, at Roger Schlafly’s blog; see here [^]. Here’s the copy-paste of the same:

1. There is a very widespread view among laymen, and unfortunately among philosophers too, that causality requires a passage of time. As just one example: In the domino effect, the fall of one domino leads to the fall of another domino only after an elapse of time.

In fact, all their examples wherever causality is operative, are of the following kind:

“If something happens then something else happens (necessarily).”

Now, they interpret the word `then’ to involve a passage of time. (Then, they also go on to worry about physics equations, time symmetry, etc., but in my view all these are too advanced considerations; they are not fundamental or even very germane at the deepest philosophical level.)

2. However, it is possible to show other examples involving causality, too. These are of the following kind:

“When something happens, something else (necessarily) happens.”

Here is an example of this latter kind, one from classical mechanics. When a bat strikes a ball, two things happen at the same time: the ball deforms (undergoes a change of shape and size) and it “experiences” (i.e. undergoes) an impulse. The deformation of the ball and the impulse it experiences are causally related.

Sure, the causality here is blatantly operative in a symmetric way: you can think of the deformation as causing the impulse, or of the impulse as causing the deformation. Yet, just because the causality is symmetric here does not mean that there is no causality in such cases. And, here, the causality operates entirely without the dimension of time in any way entering into the basic analysis.

Here is another example, now from QM: When a quantum particle is measured at a point of space, its wavefunction collapses. Here, you can say that the measurement operation causes the wavefunction collapse, and you can also say that the wavefunction collapse causes (a definite) measurement. Treatments on QM are full of causal statements of both kinds.

3. There is another view, concerning causality, which is very common among laymen and philosophers, viz. that causality necessarily requires at least two separate objects. It is an erroneous view, and I have dealt with it recently in a miniseries of posts on my blog; see https://ajitjadhav.wordpress.com/2017/05/12/relating-the-one-with-the-many/.

4. Notice, the statement “when(ever) something happens, something else (always and/or necessarily) happens” is a very broad statement. It requires no special knowledge of physics. Statements of this kind fall in the province of philosophy.

If a layman is unable to think of a statement like this by way of an example of causality, it’s OK. But when professional philosophers share this ignorance too, it’s a shame.

5. Just in passing, noteworthy is Ayn Rand’s view of causality: http://aynrandlexicon.com/lexicon/causality.html. This view was basic to my development of the points in the miniseries of posts mentioned above. … May be I should convert the miniseries into a paper and send it to a foundations/philosophy journal. … What do you think? (My question is serious.)

Thanks for highlighting the issue though; it’s very deeply interesting.

Best,

–Ajit


3. The other thing is that the other day (the late evening of the day before yesterday, to be precise), while entering a shop, I tripped over its ill-conceived steps, and suffered a fall. Got a hairline crack in one of my toes, and also a somewhat injured knee. So, had to take off from “everything” not only on Sunday but also today. Spent today mostly sleeping relaxing, trying to recover from those couple of injuries.

This late evening, I naturally found myself recalling this song—and that’s where this post ends.


4. OK. I must add a bit. I’ve been lagging on the paper-writing front, but, don’t worry; I’ve already begun re-writing (in my pocket notebook, as usual, while awaiting my turn in the hospital’s waiting lounge) my forth-coming paper on stress and strain, right today.

OK, see you folks, bye for now, and take care of yourselves…


A Song I Like:

(Hindi) “zameen se hamen aasmaan par…”
Singer: Asha Bhosale and Mohammad Rafi
Music: Madan Mohan
Lyrics: Rajinder Krishan

 

Relating the One with the Many

0. Review and Context: This post is the last one in this mini-series on the subject of the one vs. many (as understood in the context of physics). The earlier posts in this series have been, in the chronological and logical order, these:

  1. Introducing a very foundational issue of physics (and of maths) [^]
  2. The One vs. the Many [^]
  3. Some of the implications of the “Many Objects” idea… [^]
  4. Some of the implications of the “One Object” idea… [^]

In the second post in this series, we had seen how a single object can be split up into many objects (or the many objects seen as parts of a single object). Now, in this post, we note some more observations about relating the One with the Many.

The description below begins with a discussion of how the One Object may be separated into Many Objects. However, note that the maths involved here is perfectly symmetrical, and therefore, the ensuing discussion for the separation of the one object into many objects also just as well applies for putting many objects together into one object, i.e., integration.


In the second and third posts, we handled the perceived multiplicity of objects via a spatial separation according to the varying measures of the same property. A few remarks on the process of separation (or, symmetrically, on the process of integration) are now in order.

1. The extents of spatial separation depends on what property you choose on the basis of which to effect the separation:

To begin with, note that the exact extents of any spatial separations would vary depending on what property you choose for measuring them.

To take a very “layman-like” example, suppose you take a cotton-seed, i.e. the one with a soft ball of fine cotton fibres emanating from a hard center, as shown here [^]. Suppose if you use the property of reflectivity (or, the ability to be seen in a bright light against a darker background), then for the cotton-seed, the width of the overall seed might come out to be, say, 5 cm. That is to say, the spatial extent ascribable to this object would be 5 cm. However, if you choose some other physical property, then the same object may end up registering quite a different size. For instance, if you use the property: “ability to be lifted using prongs” as the true measure for the width for the seed, then its size may very well come out as just about 1–2 cm, because the soft ball of the fibres would have got crushed to a smaller volume in the act of lifting.

In short: Different properties can easily imply different extensions for the same distinguished (or separated)“object,” i.e., for the same distinguished part of the physical universe.

2. The One Object may be separated into Many Objects on a basis other than that of the spatial separation:

Spatial attributes are fundamental, but they don’t always provide the best principle to organize a theory of physics.

The separation of the single universe-object into many of its parts need not proceed on the basis of only the “physical” space.

It would be possible to separate the universe on the basis of certain basis-functions which are defined over every spatial part of the universe. For instance, the Fourier analysis gives rise to a separation of a property-function into many complex-valued frequencies (viz. pairs of spatial undulations).

If the separation is done on the basis of such abstract functions, and not on the basis of the spatial extents, then the problem of the empty regions vaporizes away immediately. There always is some or the other “frequency”, with some or the other amplitude and phase, present at literally every point in the physical universe—including in the regions of the so-called “empty” space.

However, do note that the Fourier separation is a mathematical principle. Its correspondence to the physical universe must pass through the usual, required, epistemological hoops. … Here is one instance:

Question: If infinity cannot metaphysically exist (simply because it is a mathematical concept and no mathematical concept physically exists), then how is it that an infinite series may potentially be required for splitting up the given function (viz. the one which specifies the variations the given property of the physical universe)?

Answer: An infinite Fourier series cannot indeed be used by way of a direct physical description; however, a truncated (finite) Fourier series may be.

Here, we are basically relying on the same trick as we saw earlier in this mini-series of posts: We can claim that what the truncated Fourier series represents is the actual reality, and that that function which requires an infinite series is merely a depiction, an idealization, an abstraction.

3. When to use which description—the One Object or the Many Objects:

Despite the enormous advantages of the second approach (of the One Object idea) in the fundamental theoretical physics, in classical physics as well as in our “day-to-day” life, we often speak of the physical reality using the cruder first approach (the one involving the Many Objects idea). This we do—and it’s perfectly OK to do so—mainly because of the involved context.

The Many Objects description of physics is closer to the perceptual level. Hence, its more direct, even simpler, in a way. Now, note a very important consideration:

The precision to used in a description (or a theory) is determined by its purpose.

The purpose for a description may be lofty, such as achieving fullest possible consistency of conceptual interrelations. Or it may be mundane, referring to what needs to be understood in order to get the practical things done in the day-to-day life. The range of integrations to be performed for the day-to-day usage is limited, very limited in fact. A cruder description could do for this purpose. The Many Objects idea is conceptually more economical to use here. [As a polemical remark on the side, observe that while Ayn Rand highlighted the value of purpose, neither Occam nor the later philosophers/physicists following him ever even thought of that idea: purpose.]

However, as the scope of the physical knowledge increases, the requirements of the long-range consistency mandate that it is the second approach (the one involving the One Object idea) which we must adopt as being a better representative of the actual reality, as being more fundamental.

Where does the switch-over occur?

I think that it occurs at a level of those physics problems in which the energetics program (initiated by Leibnitz), i.e., the Lagrangian approach, makes it easier to solve them, compared to the earlier, Newtonian approach. This answer basically says that any time you use the ideas such as fields, and energy, you must make the switch-over, because in the very act of using such ideas, implicitly, you are using the One Object idea anyway. Which means, EM theory, and yes, also thermodynamics.

And of course, by the time you begin tackling QM, the second approach becomes simply indispensable.

A personal side remark: I should have known better. I should have adopted the second approach earlier in my life. It would have spared me a lot of agonizing over the riddles of quantum physics, a lot of running in loops over the same territory (like a dog chasing his own tail). … But it’s OK. I am glad that at least by now, I know better. (And, engineers anyway don’t get taught the Lagrangian mechanics to the extent physicists do.)

A few days ago, Roger Schlafly had written a nice and brief post at his blog saying that there is a place for non-locality in physics. He had touched on that issue more from a common-sense and “practical” viewpoint of covering these two physics approaches [^].

Now, given the above write-up, you know that a stronger statement, in fact, can be made:

As soon as you enter the realm of the EM fields and the further development, the non-local (or the global or the One Object) theories are the only way to go.


A Song I Like:

[When I was a school-boy, I used to very much like this song. I would hum [no, can’t call it singing] with my friends. I don’t know why. OK. At least, don’t ask me why. Not any more, anyway 😉 .]

(Hindi) “thokar main hai meri saaraa zamaanaa”
Singer: Kishore Kumar
Music: R. D. Burman
Lyrics: Rajinder Krishan


OK. I am glad I have brought to a completion a series of posts that I initiated. Happened for the first time!

I have not been able to find time to actually write anything on my promised position paper on QM. … Have been thinking about how to present certain ideas better, but not making much progress… If you must ask: these involve entangled vs. product states—and why both must be possible, etc.

So, I don’t think I am going to be able to hold the mid-2017 deadline that I myself had set for me. It will take longer.

For the same reasons, may be I will be blogging less… Or, who knows, may be I will write very short general notings here and there…

Bye for now and take care…