The singularities closest to you

A Special note for the Potential Employers from the Data Science field:

Recently, in April 2020, I achieved a World Rank # 5 on the MNIST problem. The initial announcement can be found here [^], and a further status update, here [^].

All my data science-related posts can always be found here [^].

0. Preamble/Preface/Prologue/Preliminaries/Whatever Pr… (but neither probability nor public relations):

Natalie Wolchover writes an article in the Quanta Magazine: “Why gravity is not like the other forces” [^].

Motl mentions this piece in his, err.. “text” [^], and asks right in the first para.:

“…the first question should be whether gravity is different, not why [it] is different”

Great point, Lubos, err… Luboš!

Having said that, I haven’t studied relativity, and so, I only cursorily went through the rest of both these pieces.

But I want to add. (Hey, what else is a blog for?)

1. Singularities in classical mechanics:

1.1 Newtonian mechanics:

Singularity is present even in the Newtonian mechanics. If you consider the differential equation for gravity in Newtonian mechanics, it basically applies to point-particles, and so, there is a singularity in this 300+ years old theory too.

It’s a different matter that Newton got rid of the singularities by integrating gravity forces inside massive spheres (finite objects), using his shells-based argument. A very ingenious argument that never ceases to impress me. Anyway, this procedure, invented by Newton, is the reason why we tend to think that there were no singularities in his theory.

1.2 Electrostatics and electrodynamics:

Coulomb et al. couldn’t get rid of the point-ness of the point-charges the way Newton could, for gravity. No electrical phenomenon was found that changed the behaviour at experimentally accessible small enough separations between two charges. In electrostatics, the inverse-square law holds through and through—on the scales on which experiments have been performed. Naturally, the mathematical manner to capture this behaviour is to not be afraid of singularities, and to go ahead, incorporate them in the mathematical formulations of the physical theory. Remember, differential laws themselves are arrived at after applying suitable limiting processes.

So, electrostatics has point singularities in the electrostatic fields.

Ditto, for classical electro-dynamics (i.e. the Maxwellian EM, as recast by Hendrik A. Lorentz, the second Nobel laureate in physics).

Singularities exist at electric potential energy locations in all of classical EM.

Lesson: Singularities aren’t specific to general relativity. Singularities predate relativity by decades if not by centuries.

2. Singularities in quantum mechanics:

2.1 Non-relativistic quantum mechanics:

You might think that non-relativistic QM has no singularities, because the \Psi field must be at least C^0 continuous everywhere, and also not infinite anywhere even within a finite domain—else, it wouldn’t be square-normalizable. (It’s worth reminding that even in infinite domains, Sommerfeld’s radiation condition still applies, and Dirac’s delta distribution most extremely violates this condition.)

Since wavefunctions cannot be infinite anywhere, you might think that any singularities present in the physics have been burnished off due to the use of the wavefunction formalism of quantum mechanics. But of course, you would be wrong!

What the super-smart MSQM folks never tell you is this part (and they don’t take care to highlight it to their own students either): The only way to calculate the \Psi fields is by specifying a potential energy field (if you want to escape the trivial solution that all wavefunctions are zero everywhere), and crucially, in a fundamental quantum-mechanical description, the PE field to specify has to be that produced by the fundamental electric charges, first and foremost. (Any other description, even if it involves complex-valued wavefunctions, isn’t fundamental QM; it’s merely a workable approximation to the basic reality. For examples, even the models like PIB, and quantum harmonic oscillator aren’t fundamental descriptions. The easiest and fundamentally correct model is the hydrogen atom.)

Since the fundamental electric charges remain point-particles, the non-relativistic QM has not actually managed to get rid of the underlying electrical singularities.

It’s something like this. I sell you a piece of a land with a deep well. I have covered the entire field with a big sheet of green paper. I show you the photograph and claim that there is no well. Would you buy it—my argument?

The super-smart MSQM folks don’t actually make such a claim. They merely highlight the green paper so much that any mention of the well must get drowned out. That’s their trick.

2.2 OK, how about the relativistic QM?

No one agrees on what a theory of GR (General Relativity) + QM (Quantum Mechanics) looks like. Nothing is settled about this issue. In this piece let’s try to restrict ourselves to the settled science—things we know to be true.

So, what we can talk about is only this much: SR (Special Relativity) + QM. But before setting to marry them off, let’s look at the character of SR. (We already saw the character of QM above.)

3. Special relativity—its origins, scope, and nature:

3.1 SR is a mathematically repackaged classical EM:

SR is a mathematical reformulation of the classical EM, full-stop. Nothing more, nothing less—actually, something less. Let me explain. But before going to how SR is a bit “less” than classical EM, let me emphasize this point:

Just because SR begins to get taught in your Modern Physics courses, it doesn’t mean that by way of its actual roots, it’s a non-classical theory. Every bit of SR is fully rooted in the classical EM.

3.2 Classical EM has been formulated at two different levels: Fundamental, and Homogenized:

The laws of classical EM, at the most fundamental level, describe reality in terms of the fundamental massive charges. These are point-particles.

Then, classical EM also says that a very similar-looking set of differential equations applies to the “everyday” charges—you know, pieces of paper crowding near a charged comb, or paper-clips sticking to your fridge-door magnets, etc. This latter version of EM is not the most fundamental. It comes equipped with a lot of fudges, most of them having to do with the material (constitutive) properties.

3.3 Enter super-smart people:

Some smart people took this later version of the classical EM laws—let’s call it the homogenized continuum-based theory—and recast them to bring out certain mathematical properties which they exhibited. In particular, the Lorentz invariance.

Some super-smart people took the invariance-related implications of this (“homogenized continuum-based”) theory as the most distinguished character exhibited by… not the fudges-based theory, but by physical reality itself.

In short, they not only identified a certain validity (which is there) for a logical inversion which treats an implication (viz. the invariance) as the primary; they blithely also asserted that such an inverted conceptual view was to be regarded as more fundamental. Why? Because it was mathematically convenient.

These super-smart people were not concerned about the complex line of empirical and conceptual reasoning which was built patiently and integrated together into a coherent theory. They were not concerned with the physical roots. The EM theory had its roots in the early experiments on electricity, whose piece-by-piece conclusions finally came together in Maxwell’s mathematical synthesis thereof. The line culminated with Lorentz’s effecting a reduction in the entire cognitive load by reducing the number of sub-equations.

The relativistic didn’t care for these roots. Indeed, sometimes, it appears as if many of them were gloating to cut off the maths from its physical grounding. It’s these super-smart people who put forth the arbitrary assertion that the relativistic viewpoint is more fundamental than the inductive base from which it was deduced.

3.4 What is implied when you assert fundamentality to the relativistic viewpoint?

To assert fundamentality to a relativistic description is to say that the following two premises hold true:

(i) The EM of homogenized continuaa (and not the EM of the fundamental point particles) is the simplest and hence most fundamental theory.

(ii) One logical way of putting it—in terms of invariance—is superior to the other logical way of putting it, which was: a presentation of the same set of facts via inductive reasoning.

The first premise is clearly a blatant violation of method of science. As people who have done work in multi-scale physics would know, you don’t grant greater fundamentality to a theory of a grossed out effect. Why?

Well, a description in terms of grossed out quantities might be fine in the sense the theory often becomes exponentially simpler to use (without an equal reduction in percentage accuracy). Who would advocate not using Hooke’s law as in the linear formulation of elasticity, but insist on computing motions of 10^23 atoms?

However, a good multi-scaling engineer / physicist also has the sense to keep in mind that elasticity is not the final word; that there are layers and layers of rich phenomenology lying underneath it: at the meso-scale, micro-scale, nano-scale, and then, even at the atomic (or sub-atomic) scales. Schrodinger’s equation is more fundamental than Hooke’s law. Hooke’s law, projected back to the fine-grained scale, does not hold.

This situation is somewhat like this: Your 100 \times 100 photograph does not show all the features of your face the way they come out in the original 4096 \times 4096 image. The finer features remain lost even if you magnify the 100 \times 100 image to the 4096 \times 4096 size, and save it at that size. The fine-grained features remain lost. However, this does not mean that 100 \times 100 is useless. A 28 \times 28 pixels image is enough for the MNIST benchmark problem.

So, what is the intermediate conclusion? A “fudged” (homogenized) theory cannot be as fundamental—let alone be even more fundamental—as compared to the finer theory from which it was homogenized.

Poincaré must have thought otherwise. The available evidence anyway says that he said, wrote, and preached to the effect that a logical inversion of a homogenized theory was not only acceptable as an intellectually satisfying exercise, but that it must be seen as being a more fundamental description of physical reality.

Einstein, initially hesitant, later on bought this view hook, line and sinker. (Later on, he also became a superposition of an Isaac Asimov of the relativity theory, a Merilyn Monroe of the popular press, and a collage of the early 20th century Western intellectuals’ notions of an ancient sage. But this issue, seen in any basis—components-wise or in a new basis in which the superposition itself is a basis—takes us away from the issues at hand.)

The view promulgated by these super-smart people, however, cannot qualify to be called the most fundamental description.

3.5 Why is the usual idea of having to formulate a relativistic quantum mechanics theory a basic error?

It is an error to expect that the potential energy fields in the Schroedinger equation ought to obey the (special) relativistic limits.

The expectation rests on treating the magnetic field at a par with the static electric field.

However, there are no monopoles in the classical EM, and so, the electric charges enjoy a place of greater fundamentality. If you have kept your working epistemology untarnished by corrupt forms of methods and content, you should have no trouble seeing this point. It’s very simple.

It’s the electrons which produce the electric fields; every electric field that can at all exist in reality can always be expressed as a linear superposition of elementary fields each of which has a singularity in it—the point identified for the classical position of the electron.

We compress this complex line of thought by simply saying:

Point-particles of electrons produce electric fields, and this is the only way any electric field can at all be produced.

Naturally, electric fields don’t change anywhere at all, unless the electrons themselves move.

The only way a magnetic field can be had at any point in physical space is if the electric field at that point changes in time. Why do we say “the only way”? Because, there are no magnetic monopoles to create these magnetic fields.

So, the burden of creating any and every magnetic field completely rests on the motions of the electrons.

And, the electrons, being point particles, have singularities in them.

So, you see, in the most fundamental description, EM of finite objects is a multi-scaled theory of EM of point-charges. And, EM of finite objects was, historically, first formulated before people could plain grab the achievement, recast it into an alternative form (having a different look but the same physical scope), and then run naked in the streets shouting “Relativity!”, “Relativity!!”.

Another way to look at the conceptual hierarchy is this:

Answer this question:

If you solve the problem of an electron in a magnetic field quantum mechanically, did you use the most basic QM? Or was it a multi-scale-wise grossed out (and approximate) QM description that you used?

Hint: The only way a magnetic field can at all come into existence is when some or the other electron is accelerating somewhere or the other in the universe.

For the layman: The situation here is like this: A man has a son. The son plays with another man, say the boy’s uncle. Can you now say that because there is an interaction between the nephew and the uncle, therefore, they are what all matters? that the man responsible for creating this relationship in the first place, namely, the son’s father cannot ever enter any fundamental or basic description?

Of course, this viewpoint also means that the only fundamentally valid relativistic QM would be one which is completely couched in terms of the electric fields only. No magnetic fields.

3.6. How to incorporate the magnetic fields in the most fundamental QM description?

I don’t know. (Neither do I much care—it’s not my research field.) But sure, I can put forth a hypothetical way of looking at it.

Think of the magnetic field as a quantum mechanical effect. That is to say, the electrostatic fields (which implies, the positions of electrons’ respective singularities) and the wavefunctions produced in the aether in correspondence with these electrostatic fields, together form a complete description. (Here, the wavefunction includes the spin.)

You can then abstractly encapsulate certain kinds of changes in these fundamental entities, and call the abstraction by the name of magnetic field.

You can then realize that the changes in magnetic and electric fields imply the c constant, and then trace back the origins of the c as being rooted in the kind of changes in the electrostatic fields (PE) and wavefunction fields (KE) which give rise to the higher-level of phenomenon of c.

But in no case can you have the hodge-podge favored by Einstein (and millions of his devotees).

To the layman: This hodge-podge consists of regarding the play (“interactions”) between the boy and the uncle as primary, without bothering about the father. You would avoid this kind of a hodge-podge if what you wanted was a basic consistency.

3.7 Singularities and the kind of relativistic QM which is needed:

So, you see, what is supposed to be the relativistic QM itself has to be reformulated. Then it would be easy to see that:

There are singularities of electric point-charges even in the relativistic QM.

In today’s formulation of relativistic QM, since it takes SR as if SR itself was the most basic ground truth (without looking into the conceptual bases of SR in the classical EM), it does take an extra special effort for you to realize that the most fundamental singularity in the relativistic QM is that of the electrons—and not of any relativistic spacetime contortions.

4. A word about putting quantum mechanics and gravity together:

Now, a word about QM and gravity—Wolchover’s concern for her abovementioned report. (Also, arguably, one of the concerns of the physicists she interviewed.)

Before we get going, a clarification is necessary—the one which concerns with mass of the electron.

4.1 Is charge a point-property in the classical EM? how about mass?

It might come as a surprise to you, but it’s a fact that in the fundamental classical EM, it does not matter whether you ascribe a specific location to the attribute of the electric charge, or not.

In particular, You may take the position (1) that the electric charge exists at the same point where the singularity in the electron’s field is. Or, alternatively, you may adopt the position (2) that the charge is actually distributed all over the space, wherever the electric field exists.

Realize that whether you take the first position or the second, it makes no difference whatsoever either to the concepts at the root of the EM laws or the associated calculation procedures associated with them.

However, we may consider the fact that the singularity indeed is a very distinguished point. There is only one such a point associated with the interaction of a given electron with another given electron. Each electron sees one and only one singular point in the field produced by the other electron.

Each electron also has just one charge, which remains constant at all times. An electron or a proton does not possess two charges. They do not possess complex-valued charges.

So, based on this extraneous consideration (it’s not mandated by the basic concepts or laws), we may think of simplifying the matters, and say that

the charge of an electron (or the other fundamental particle, viz., proton) exists only at the singular point, and nowhere else.

All in all, we might adopt the position that the charge is where the singularity is—even if there is no positive evidence for the position.

Then, continuing on this conceptually alluring but not empirically necessitated viewpoint, we could also say that the electron’s mass is where its electrostatic singularity is.

Now, a relatively minor consideration here also is that ascribing the mass only to the point of singularity also suggests an easy analogue to the Newtonian particle-mechanics. I am not sure how advantageous this analogue is. Even if there is some advantage, it would still be a minor advantage. The reason is, the two theories (NM and EM) are, hierarchically, at highly unequal levels—and it is this fact which is far more important.

All in all, we can perhaps adopt this position:

With all the if’s and the but’s kept in the context, the mass and the charge may be regarded as not just multipliers in the field equations; they may be regarded to have a distinguished location in space too; that the charge and mass exist at one point and no other.

We could say that. There is no experiment which mandates that we adopt this viewpoint, but there also is no experiment—or conceptual consideration—which goes against it. And, it seems to be a bit easier on the mind.

4.2 How quantum gravity becomes ridiculous simple:

If we thus adopt the viewpoint that the mass is where the electrostatic singularity is, then the issue of quantum gravity becomes ridiculously simple… assuming that you have developed a theory to multi-scale-wise gross out classical magnetism from the more basic QM formalism, in the first place.

Why would it make the quantum gravity simple?

Gravity is just a force between two point particles of electrons (or protons), and, you could directly include it in your QM if your computer’s floating point arithmetic allows you to deal with it.

As an engineer, I wouldn’t bother.

But, basically, that’s the only physics-wise relevance of quantum gravity.

4.3 What is the real relevance of quantum gravity?

The real reason behind the attempts to build a theory of quantum gravity (by following the track of the usual kind of the relativistic QM theory) is not based in physics or nature of reality. The reasons are, say “social”.

The socially important reason to pursue quantum gravity is that it keeps physicists in employment.

Naturally, once they are employed, they talk. They publish papers. Give interviews to the media.

All this can be fine, so long as you bear in your mind the real reason at all times. A field such as quantum gravity was invented (i.e. not discovered) only in order to keep some physicists out of unemployment. There is no other reason.

Neither Wolchover nor Motl would tell you this part, but it is true.

5. So, what can we finally say regarding singularities?:

Simply this much:

Next time you run into the word “singularity,” think of those small pieces of paper and a plastic comb.

Don’t think of those advanced graphics depicting some interstellar space-ship orbiting around a black-hole, with a lot of gooey stuff going round and round around a half-risen sun or something like that. Don’t think of that.

Singularities is far more common-place than you’ve been led to think.

Your laptop or cell-phone has of the order of 10^23 number of singularities, all happily running around mostly within that small volume, and acting together, effectively giving your laptop its shape, its solidity, its form. These singularities is what gives your laptop the ability to brighten the pixels too, and that’s what ultimately allows you to read this post.

Finally, remember the definition of singularity:

A singularity is a distinguished point in an otherwise finite field where the field-strength approaches (positive or negative) infinity.

This is a mathematical characterization. Given that infinities are involved, physics can in principle have no characterization of any singularity. It’s a point which “falls out of”, i.e., is in principle excluded from, the integrated body of knowledge that is physics. Singularity is defined not on the basis of its own positive merits, but by negation of what we know to be true. Physics deals only with that which is true.

It might turn out that there is perhaps nothing interesting to be eventually found at some point of some singularity in some physics theory—classical or quantum. Or, it could also turn out that the physics at some singularity is only very mildly interesting. There is no reason—not yet—to believe that there must be something fascinating going on at every point which is mathematically described by a singularity. Remember: Singularities exist only in the abstract (limiting processes-based) mathematical characterizations, and that these abstractions arise from the known physics of the situation around the so distinguished point.

We do know a fantastically great deal of physics that is implied by the physics theories which do have singularities. But we don’t know the physics at the singularity. We also know that so long as the concept involves infinities, it is not a piece of valid physics. The moment the physics of some kind of singularities is figured out, the field strengths there would be found to be not infinities.

So, what’s singularity? It’s those pieces of paper and the comb.

Even better:

You—your body—itself carries singularities. Approx. 100 \times 10^23 number of them, in the least. You don’t have to go looking elsewhere for them. This is an established fact of physics.

Remember that bit.

6. To physics experts:

Yes, there can be a valid theory of non-relativistic quantum mechanics that incorporates gravity too.

It is known that such a theory would obviously give erroneous predictions. However, the point isn’t that. The point is simply this:

Gravity is not basically wedded to, let alone be an effect of, electromagnetism. That’s why, it simply cannot be an effect of the relativistic reformulations of the multi-scaled grossed out view of what actually is the fundamental theory of electromagnetism.

Gravity is basically an effect shown by massive objects.

Inasmuch as electrons have the property of mass, and inasmuch as mass can be thought of as existing at the distinguished point of electrostatic singularities, even a non-relativistic theory of quantum gravity is possible. It would be as simple as adding the Newtonian gravitational potential energy into the Hamiltonian for the non-relativistic quantum mechanics.

You are not impressed, I know. Doesn’t matter. My primary concern never was what you think; it always was (and is): what the truth is, and hence, also, what kind of valid conceptual structures there at all can be. This has not always been a concern common to both of us. Which fact does leave a bit of an impression about you in my mind, although it is negative-valued.

Be advised.

A song I like:

(Hindi) ओ मेरे दिल के चैन (“O mere, dil ke chain”)
Singer: Lata Mangeshkar
Music: R. D. Burman
Lyrics: Majrooh Sultanpuri


I think I have run the original version by Kishore Kumar here in this section before. This time, it’s time for Lata’s version.

Lata’s version came as a big surprise to me; I “discovered” it only a month ago. I had heard other young girls’ versions on the YouTube, I think. But never Lata’s—even if, I now gather, it’s been around for some two decades by now. Shame on me!

To the n-th order approximation, I can’t tell whether I like Kishor’s version better or Lata’s, where n can, of course, only be a finite number though it already is the case that n > 5.

… BTW, any time in the past (i.e., not just in my youth) I could have very easily betted a very good amount of money that no other singer would ever be able to sing this song. A female singer, in particular, wouldn’t be able to even begin singing this song. I would have been right. When it comes to the other singers, I don’t even complete their, err, renderings. For a popular case in point, take the link provided after this sentence, but don’t bother to return if you stay with it for more than, like, 30 seconds [^].

Earlier, I would’ve expected that even Lata is going to fail at the try.

But after listening to her version, I… I don’t know what to think, any more. May be it’s the aforementioned uncertainty which makes all thought cease! And thusly, I now (shamelessly and purely) enjoy Lata’s version, too. Suggestion: If you came back from the above link within 30 seconds, you follow me, too.




Ontologies in physics—1: Newtonian mechanics

0. Before we begin:

The mechanics described in the last post, namely that of the molecular dynamics (MD) technique, had three salient features: (i) a potential energy which is anchored into the pair-wise separations of neighbouring discrete atomic nuclei (loosely called “atoms”), with its negative gradient forming a force field, (ii) the local force-field accelerating the atoms thereby causing a modification in the latter’s motions (velocities), and (iii) the resulting modifications in the atomic positions leading to a change in the potential energy, thereby forming a feedback loop. Hence, an essentially nonlinear dynamics.

We also saw the ramifications of such a chaotic dynamics, for instance, the obvious stability of phases over wide ranges of the important parameter, viz. temperature (i.e. average kinetic energy i.e. velocities). We also noted that MD is very close to QM, and that in my approach, the equations of QM and MD show a remarkable similarity.

However, the ontologies of QM and MD differ in that QM is not a classical theory. Further, ontology of even purely classical concepts like potentials, used even at the MD level, are not always clearly spelt out in the literature.

Therefore, before we are able to go to my tweets on my new approach to QM, it is now further necessary to clearly understand certain basic facts of life physics—pertaining to various ontologies followed in it over a period of time. We will do that beginning with this post.

1. An ontology as the proper starting point of physics:

The starting point of a physics theory is not a mathematical equation, not even the kind of configurations there are to a system. The proper starting point is: the kind of objects that are presumed to exist in the real world before the exercise of building a theoretical system involving them can even begin. Thus, the proper starting point of any and every physical theory is an implicit or explicit ontology.

Depending on the ontology followed, we may classify the physics theories (up to nonrelativistic QM) into these types:

  • Newton’s original mechanics (here called the Newtonian Mechanics or NM),
  • Classical Electrodynamics (EM), including:
    • the ontological analogy it suggested for the Newtonian gravitational field (NG)
  • The non-relativistic quantum mechanics, as in Schrodinger’s formalism (QM).

I have blogged about these ontologies before. Go through a previous blog post [^] if you wish, but also note that my overall understanding of physics has undergone substantial revision since then. Indeed, if necessary, I might further split the ontologies as I go writing about the above three/four.

The reason we must undertake this exercise of identifying a fairly precise description of these ontologies right now is that in the Outline document (on my new approach to QM [^]), in the section on ontology, I speak of some of the QM objects as being “classical.” However, there are certain important nuances to the meaning to even word “classical,” especially when it comes to the NM vs EM distinction. Hence the necessity to state the exact ontological views.

I would have loved to follow the historical order of the development in the ontological views followed in physics. However, I don’t have time for that right now. So, the development will be only very broadly in the historical order.

2. The ontology followed in the original Newtonian mechanics (NM):

2.1 Objects:

The world consists of spatially discrete objects that are spatially separated from each other. They are of finite sizes—neither zero nor infinite. (Ignore all mathematicians and even mathematical physicists who argue otherwise.) Take a piece of paper and draw some blobs for some objects, say for the earth, the sun or the moon. Or, for some neat solid objects like billiard balls. These blobs represent the primary objects of NM.

The objects are perceptually observed to be spatially extended (their opposite ends don’t coincide), and it is perceptually evident that any one object lies in a specific spatial relationship with the other objects, that it has its own location.

2.2 Absolute space:

The objects of NM exist in an absolute space.

Take an imaginary ruler and an imaginary sharp object. Mark some imaginary, straight-line scratches on the empty space, so as to leave an infinite grid of locations on it.

Yes, this is doable. Just make sure to undertake this exercise while being firmly seated in your armchair on the earth, without ever moving. (Don’t worry about some other grid that some other guy sitting in some other arm-chair makes. In the dynamical equations, they don’t conflict with each other.) You just have to realize that in NM, the world is very stable and simple.

The walls of your room, e.g., don’t move or deform. They form a rigid body, and the surfaces of any such a rigid body can be marked with a neat system of lines, like your school-time graph paper. You can also imagine strings being tied tautly, to form straight lines between opposite walls of the room. A system of such strings, when taken to infinitely small size and imagine to offer no resistance to motions of any objects (seen above), easily provides a means to measure locations within the room. A similar kind of straight lines extended in all directions and infinitely, yields a system of measurement.

But we need to make a distinction between a system of measurements and the thing that is being measured. (We are into ontology.) Here we suppose that the volume inside an empty room is not completely empty. It is filled with a background object. It is a physical object but of a special kind—it offers no resistance to any motion of anything through it.

The grid marked by you never moves because the background object that is the empty space also does not move. They both remain fixed in all respects at all times and forever.

However, objects of the first kind (solid ones like moon, Sun, etc.) are often seen as moving through the aforementioned, unmovable, undeformable background object—called the absolute space—in a lawful manner.

The concepts of position and distance are abstracted from those of locations and extensions of objects.

The concept of space has two meanings: (i) as the physically existing background object, and (ii) as a mathematically devised system of establishing quantitative measures like positions, distances, and relationships between them.

2.3 Configurations and changes in them:

Objects taken together with their (absolute) positions are said to form a configuration.

It is physically observed that configurations of objects are continuously changing from one state to another. There are an infinite number of states in between any two states, and they come to occur in some specific (observed) order. The order being followed in going through all such states (and all the attributes of the stated orderliness) is lawful—it cannot be changed arbitrarily. The individual states are described in reference to the positions of objects against the absolute space. The orderly progression in them occurs because the configuration of the universe is always changing (whether the one you see around your armchair does or not).

2.4 Absolute time:

The immutability of the order in the universal progression of changes in configurations implies a certain measure called time.

With time, you compare and contrast the perceived speed with which a progression in the states of a system undergoes changes: the faster the perceived changes, the smaller the changes in the elapsed time.

Perceiving differences in the speeds of changes of configurations is easiest when the phenomena are of perceptually reproducible speeds and hence durations, which most saliently (though not exclusively) is the case when they are periodic. For instance, pendulum comes back to a certain position (in a single cycle of oscillations) much faster; the sand in a sand-clock gets exhausts much slower; the Sun rises again at a pace that is even slower.

The perception of the speeds in the changes of physical configurations is at the basis of the concept of time.

Time is a high-level concept. It not at all the most fundamental one. (Both Kant and Einstein were summarily wrong here.) It certainly is not as fundamental as the concept of space is. Let me repeat the logic:

Objects come first. Then come the perceived extensions and locations of objects. Then comes the concept of space as a physical object. Then the concept of mathematically defined absolute space, and then of configurations. Then the orderly and continuous changes in configurations. Then we arrive at the idea of a defining a certain kind of a measure for such changes by comparing two continuous changes with each other on the basis of their perceived rapidity. It’s only at this point in the logical development that we can even think of time, or refine this concept by ascribing to it a mathematical quantity that continuously increases. Space and time are not on the same footing—neither in physical terms nor in the complexity of reasoning underlying their mathematical definitions.

This attribute of the perceived speediness of changes (i.e. the attribute of time) is common to all the changes occurring to all the objects in the universe—not just to their motions. Hence, any change whatsoever can be measured using time.

Thus, the physical universe itself has this attribute called time. Time physically exists—via the inverse relation of relative speediness, which is directly observed.

Since time is common to all changes all points of the absolute space in the universe, it can be put to use when it comes to quantitatively characterizing the changes associated with motions of objects.

In NM, the measures of time also are uniform at all locations in the absolute space.

Many of these considerations remain exactly intact even in the relativity theory. What changes in the relativity theory are only the mathematically defined systems for space and time measurements. But neither the fact that they physically exist, nor the fact that they are physically entirely different in origins and at uneven levels in the knowledge hierarchy. Any one who suggests they don’t is stupid—be it a Kant, a Poincare, an Einstein, or your next rising star on the pop-sci horizon.

Now, given the absolute space and the absolute time, it is “time” to study motions (of objects).

2.5 Mass:

Objects have mass. Mass is a dynamically defined measure that happens to match exceedingly well with the notion of amount of matter (“stuff”) possessed by objects. In NM, mass is measured (as in practice it still is) by measuring weight—i.e. the strength of an object’s response to the earth’s gravitational field (which is in common to all the objects being weighed—in fact is quantitatively constant for all of them).

Mass is an attribute of individual objects. Hence, when a given object moves and thereby changes its location, so does its mass. Thus, mass has no location other than that of the object whose attribute it is. Obvious, no? (In the NM ontology, it is.)

2.6 Point-particles:

Objects can be abstractly regarded as point-particles via the idea of the center of mass (CoM). The CoM is the distinguished point which, when entered into dynamical equations, correctly reproduces the observed motions of the actual objects, especially those with spherical symmetry (so that angular momentum etc. are not involved).

The view of objects as point-particles is an abstraction. What metaphysically exist are only spatially finite objects. However, via abstraction, objects can be taken as massive point-particles (i.e., particles having no extension).

Some of the salient features associated with the motions of point-particles are: (i) their trajectories (the continuous and mathematically simple paths that they trace in the absolute space over absolute time), (ii) their displacements, (iii) their speeds and directions (velocities), (iv) the changes in their motions i.e. their accelerations, etc.

2.7 The direct contact as the only means of interactions between objects:

Objects can be made to change (some or more of the measures of) their motions due to the actions of other objects.

In NM, physical objects cannot be made to change their motions through mental action alone. They change motions only after interaction with other physical objects.

In NM, the only mechanism through which two physical objects can come to change their motions is: via a direct physical contact between them.

The contact may last for very short durations (as happens in the collisions of billiard balls), which can be abstractly described as an instantaneous change. The contact may last, continuously, for a long time (as happens with motions of billiard balls on a table with friction; or the idealized, frictionless motion of a ball through air; or of an ideal bead sliding without friction on an ideal wire, etc.).

2.8 Momentum and force:

The dynamically most relevant measure of motion (in Newton’s words, its “quantity”) is: the momentum of an object. It at once captures the effects of both mass and velocity on an object’s dynamical behavior.

The physical mechanism of how two objects affect each other’s motions is: the direct physical contact. The (mathematically devised) quantitative measure of how much an object’s motion has been affected is the force, defined as time-rate of change of its momentum.

Thus, in NM, forces arise only by direct contact between two bodies, and only for the duration that they are in contact.

Since in NM, mass of a given object always remains constant, force and acceleration amount to be just two different terms to describe the essentially same quantitative measures of the same physical facts. Any acceleration of a point-particle necessarily implies a force acting on it; any (net non-zero) force applied to a point-particle necessarily accelerates it. There also is no delay in the action of a force and the acceleration produced in reality—or vice versa. (Deceleration of one object while in contact with second object is a production of a force by the first on the second.)

The universe obeys the law of conservation of momentum.

2.9 An interaction, but without direct contact—gravity:

In the ontology of NM, the only exception to the rule of interaction via direct contact is: gravity.

No one knows how can it be that one object affects—forces—another object at a distance, with literally nothing in between them. Let’s call it an instantaneous action at a distance (IAD).

This issue of the presence of IAD in gravity is a riddle for NM because physical contact is the only mechanism allowed in it by which forces can ever come to arise, i.e., the direct contact is the only mechanism available for one object to affect another object.

[The legal system till date recognizes this principle. To show that a moving knife involved in a murder was not wielded by you, you only have to show that there was no direct physical contact between you and that knife, at that time.]

Coming back to the ontological riddle, no one knows how to resolve it within the context of the NM ontology. Not even Newton. Therefore, the dynamical equation that is Newton’s law of universal gravitation is an incomplete description. Even though it works perfectly in explaining all the observed data concerning the celestial motions (such as those by Kepler).

2.10 The energetics program and the potential energy:

The same physics as is given by Newton’s laws can also be described using a different ontological term: energy.

An object in motion has an attribute called the kinetic energy (whose quantitative measure is defined as 1/2 mv^2). Objects in a perfectly elastic collision conserve their total kinetic energy. This is a direct parallel to Newton’s original analysis via the conservation of total momentum.

In the energetics program (pursued by Leibnitz, Euler, Lagrange, and others), two objects interacting at a distance with each other via gravity, say a massive ball and the earth, have an additional energy associated with them. This energy is associated not with their motions, but with their common configuration. This energy is called the potential energy.

Consider a ball held in hand at some height, which is about to be released. So long as the ball is not released, the configuration of the ball and the earth stays the same over any lapse of time. Though both the objects have zero kinetic energy, their configuration still is considered to have this second form of energy called potential energy. For an unreleased ball, since the configuration of ball–earth system stays the same in time, the potential energy of this configuration also stays the same.

The potential energy measures the unrealized capacity of a configuration to undergo change, if the physical constraints restricting the possible motion, such as the support for the ball, are removed.

When the support is removed, the ball falls down. It accelerates towards the ground.

In the energetic analysis, the ball acquires a kinetic energy (of motion). If initial KE is zero, and if total KE is conserved, then where does this KE of the falling ball come from? It comes about because the ball–earth system is supposed as simultaneously losing its potential energy. When the ball undergoes free fall the system configuration is continuously changing. So, the energy associated with the configuration (relative positions) also is continuously changing. For conservation law to work, the system has to lose PE so that it can gain KE. Gaining of a KE is regarded as a process of realization of a potential. The realized potential is subtracted from the initial potential energy.

Just before the ball comes to rest at the ground, its speed is the highest. That’s because almost all of its initial potential energy has been realized; the realization consists of this particular instantaneous state of motion (of the highest speed).

Thus, the potential energy of the ball (its capacity to undergo motion) is higher at a height, and it is zero at the ground. (After all, once it’s on the ground, it can’t move any further down.) Mathematically, the potential energy of a system is given as mgh.

When action-at-a-distance forces like gravity are part of a system description, the total energy of a system at any instant is the sum, at that instant, of the kinetic energies of all its separate constituent objects taken individually, and the potential energy associated with all their positions taken at once—i.e. their configuration.

Thus, notice, the potential energy belongs to the configuration—to the entire system—and not to any one object. That’s in contrast to the kinetic energy. Each object has its own kinetic energy (when it’s in motion). But a single isolated object does not have any potential energy, be it stationary or in motion. Only two or more objects taken together (as a system) possess PE.

For this reason, in NM, the KE has a point-position: it is always located where that object is, during motion. In contrast, the PE does not have any spatial position. It is an attribute of the relative positions of two or more objects taken at once. That’s why, in NM, there is no spatially distinguished point where the PE of a falling ball exists—there is no PE of a ball in the first place!

The conservation of law for the universe is: KE + PE = constant.

2.11 A recap of the NM ontology:

In short, the ontology of NM is this: The objects that NM studies are massive (like solid balls), and isolated from each other in the absolute space. They can move and affect each other’s motions primarily through direct contact. In an extended description, two objects can also act via gravity, though mechanism for such action at a distance is not known in the NM ontology. (In a tentative substitute for the ontology, gravity is taken to act as if it were through an invisible string that connected two spatially separated objects.) In NM, the motions and interactions of objects can be described with reference to the passage of a common universal time. Point-particles don’t physically exists, but form a useful abstraction.

Notice, specific ideas like Newton’s laws, or the law of conservation of momentum or energy, though mentioned above, are not a part of NM ontology as such—they form a part only of its physics, not of ontology.

2.12 In NM, potentials don’t form fields, and so, are attributes of configurations, not of individual objects:

Notice also that while potential energy has entered the physics analysis using NM, it is still not being regarded as a field. Neither gravity nor potential is still being regarded as a field. An object like a field is missing from the NM ontology.

In principle, for visualization of what the world is like using Newton’s own approach, you can draw isolated dots in space representing massive point-particles; indicate (or show in animation) their velocities/momenta; and also indicate the forces which arise between them—which can happen only during a direct contact.

Forces arise and act at the point of direct contact but nowhere else. Therefore, forces arise only at the point-positions of particles when they are in direct contact—and it is for this reason that forces are able to affect the particles’ motions. You can use Newton’s laws (or conservation of the sum of PE and KE) and calculate the motions of such particles. If objects of finite sizes have to be dealt with as such, they are to be seen as collections of infinitely many particles each of which is infinitely small. It is the particles that are basic to the NM ontology.

In using the Leibniz/Euler/Lagrange’s energetics program, you still draw only isolated dots for particles. However, you now implicitly suppose that they form a system.

“System” actually is a much later-date concept. Using modern ideas, we can draw an imaginary box around the particles which are being considered for a dynamical description. We can then imagine as if a meter is attached to this imaginary box. This meter displays a number, and calculations involving it enter into analysis. The reading on the meter gives the potential energy for the overall system—for all the particles put together, in the configuration in which they are found together. Thus, this number is not associated with any one particle in the system, but with the overall system taken as a whole (or, the system taken as an abstract object of sorts).

Thus, to repeat, the potential energy “of a ball” is a rather loose expression, if you follow the NM ontology. The PE is not an attribute of a single object. Hence, PE is not something which moves in space along with it. PE remains a global property of a system with unspecified spatial properties (like position) for it.

The idea of a potential as something that is an attribute of an individual object itself (regardless of the system it is in), though so familiar to us today, actually forms a part of a distinct development in ontology. This development is best illustrated with Maxwell’s electrodynamics. I will come to it after a few days.

… In the meanwhile, GaNapati festival greetings, take care, and bye for now…

A song I like:

(Marathi) “too sukhakartaa too du:khahartaa…”
Singer: Ashalata Wabgaonkar
Lyrics and Music: Vijay Sonalkar

History: Originally published (~2,700 words) on 2019/09/02 15:48 IST. Considerably extended (but without changing the sub-paragraphs structure or altering the basic points—~3,900 words) on 2019/09/03 15:04 IST. … Now am leaving it in whatever shape it is in.