Yes I know it!

Note: A long update was posted on 12th December 2017, 11:35 IST.

This post is spurred by my browsing of certain twitter feeds of certain pop-sci. writers.

The URL being highlighted—and it would be, say, “negligible,” but for the reputation of the Web domain name on which it appears—is this: [^].

I want to remind you that I know the answers to all the essential quantum mysteries.

Not only that, I also want to remind you that I can discuss about them, in person.

It’s just that my circumstances—past, and present (though I don’t know about future)—which compel me to say, definitely, that I am not available for writing it down for you (i.e. for the layman) whether here or elsewhere, as of now. Neither am I available for discussions on Skype, or via video conferencing, or with whatever “remoting” mode you have in mind. Uh… Yes… WhatsApp? Include it, too. Or something—anything—like that. Whether such requests come from some millionaire Indian in USA (and there are tons of them out there), or otherwise. Nope. A flat no is the answer for all such requests. They are out of question, bounds… At least for now.

… Things may change in future, but at least for the time being, the discussions would have to be with those who already have studied (the non-relativistic) quantum physics as it is taught in universities, up to graduate (PhD) level.

And, you have to have discussions in person. That’s the firm condition being set (for the gain of their knowledge 🙂 ).

Just wanted to remind you, that’s all!

Update on 12th December 2017, 11:35 AM IST:

I have moved the update to a new post.


A Song I Like:

(Western, Instrumental) “Berlin Melody”
Credits: Billy Vaughn

[The same 45 RPM thingie [as in here [^], and here [^]] . … I was always unsure whether I liked this one better or the “Come September” one. … Guess, after the n-th thought, that it was this one. There is an odd-even thing about it. For odd ‘n” I think this one is better. For even ‘n’, I think the “Come September” is better.

… And then, there also are a few more musical goodies which came my way during that vacation, and I will make sure that they find their way to you too….

Actually, it’s not the simple odd-even thing. The maths here is more complicated than just the binary logic. It’s an n-ary logic. And, I am “equally” divided among them all. (4+ decades later, I still remain divided.)… (But perhaps the “best” of them was a Marathi one, though it clearly showed a best sort of a learning coming from also the Western music. I will share it the next time.)]

[As usual, may be, another revision [?]… Is it due? Yes, one was due. Have edited streamlined the main post, and then, also added a long update on 12th December 2017, as noted above.]




Blog-Filling—Part 3

Note: A long Update was added on 23 November 2017, at the end of the post.

Today I got just a little bit of respite from what has been a very tight schedule, which has been running into my weekends, too.

But at least for today, I do have a bit of a respite. So, I could at least think of posting something.

But for precisely the same reason, I don’t have any blogging material ready in the mind. So, I will just note something interesting that passed by me recently:

  1. Catastrophe Theory: Check out Prof. Zhigang Suo’s recent blog post at iMechanica on catastrophe theory, here [^]; it’s marked by Suo’s trademark simplicity. He also helpfully provides a copy of Zeeman’s 1976 SciAm article, too. Regular readers of this blog will know that I am a big fan of the catastrophe theory; see, for instance, my last post mentioning the topic, here [^].
  2. Computational Science and Engineering, and Python: If you are into computational science and engineering (which is The Proper And The Only Proper long-form of “CSE”), and wish to have fun with Python, then check out Prof. Hans Petter Langtangen’s excellent books, all under Open Source. Especially recommended is his “Finite Difference Computing with PDEs—A Modern Software Approach” [^]. What impressed me immediately was the way the author begins this book with the wave equation, and not with the diffusion or potential equation as is the routine practice in the FDM (or CSE) books. He also provides the detailed mathematical reason for his unusual choice of ordering the material, but apart from his reason(s), let me add in a comment here: wave \Rightarrow diffusion \Rightarrow potential (Poisson-Laplace) precisely was the historical order in which the maths of PDEs (by which I mean both the formulations of the equations and the techniques for their solutions) got developed—even though the modern trend is to reverse this order in the name of “simplicity.” The book comes with Python scripts; you don’t have to copy-paste code from the PDF (and then keep correcting the errors of characters or indentations). And, the book covers nonlinearity too.
  3. Good Notes/Teachings/Explanations of UG Quantum Physics: I ran across Dan Schroeder’s “Entanglement isn’t just for spin.” Very true. And it needed to be said [^]. BTW, if you want a more gentle introduction to the UG-level QM than is presented in Allan Adam (et al)’s MIT OCW 8.04–8.06 [^], then make sure to check out Schroeder’s course at Weber [^] too. … Personally, though, I keep on fantasizing about going through all the videos of Adam’s course and taking out notes and posting them at my Web site. [… sigh]
  4. The Supposed Spirituality of the “Quantum Information” Stored in the “Protein-Based Micro-Tubules”: OTOH, if you are more into philosophy of quantum mechanics, then do check out Roger Schlafly’s latest post, not to mention my comment on it, here [^].

The point no. 4. above was added in lieu of the usual “A Song I Like” section. The reason is, though I could squeeze in the time to write this post, I still remain far too rushed to think of a song—and to think/check if I have already run it here or not. But I will try add one later on, either to this post, or, if there is a big delay, then as the next “blog filler” post, the next time round.

[Update on 23 Nov. 2017 09:25 AM IST: Added the Song I Like section; see below]

OK, that’s it! … Will catch you at some indefinite time in future here, bye for now and take care…

A Song I Like:

(Western, Instrumental) “Theme from ‘Come September'”
Credits: Bobby Darin (?) [+ Billy Vaughn (?)]

[I grew up in what were absolutely rural areas in Maharashtra, India. All my initial years till my 9th standard were limited, at its upper end in the continuum of urbanity, to Shirpur, which still is only a taluka place. And, back then, it was a decidedly far more of a backward + adivasi region. The population of the main town itself hadn’t reached more than 15,000 or so by the time I left it in my X standard; the town didn’t have a single traffic light; most of the houses including the one we lived in) were load-bearing structures, not RCC; all the roads in the town were of single lanes; etc.

Even that being the case, I happened to listen to this song—a Western song—right when I was in Shirpur, in my 2nd/3rd standard. I first heard the song at my Mama’s place (an engineer, he was back then posted in the “big city” of the nearby Jalgaon, a district place).

As to this song, as soon as I listened to it, I was “into it.” I remained so for all the days of that vacation at Mama’s place. Yes, it was a 45 RPM record, and the permission to put the record on the player and even to play it, entirely on my own, was hard won after a determined and tedious effort to show all the elders that I was able to put the pin on to the record very carefully. And, every one in the house was an elder to me: my siblings, cousins, uncle, his wife, not to mention my parents (who were the last ones to be satisfied). But once the recognition arrived, I used it to the hilt; I must have ended up playing this record for at least 5 times for every remaining day of the vacation back then.

As far as I am concerned, I am entirely positive that appreciation for a certain style or kind of music isn’t determined by your environment or the specific culture in which you grow up.

As far as songs like these are concerned, today I am able to discern that what I had immediately though indirectly grasped, even as a 6–7 year old child, was what I today would describe as a certain kind of an “epistemological cleanliness.” There was a clear adherence to certain definitive, delimited kind of specifics, whether in terms of tones or rhythm. Now, it sure did help that this tune was happy. But frankly, I am certain, I would’ve liked a “clean” song like this one—one with very definite “separations”/”delineations” in its phrases, in its parts—even if the song itself weren’t to be so directly evocative of such frankly happy a mood. Indian music, in contrast, tends to keep “continuity” for its own sake, even when it’s not called for, and the certain downside of that style is that it leads to a badly mixed up “curry” of indefinitely stretched out weilings, even noise, very proudly passing as “music”. (In evidence: pick up any traditional “royal palace”/”kothaa” music.) … Yes, of course, there is a symmetrical downside to the specific “separated” style carried by the Western music too; the specific style of noise it can easily slip into is a disjointed kind of a noise. (In evidence, I offer 90% of Western classical music, and 99.99% of Western popular “music”. As to which 90%, well, we have to meet in person, and listen to select pieces of music on the fly.)

Anyway, coming back to the present song, today I searched for the original soundtrack of “Come September”, and got, say, this one [^]. However, I am not too sure that the version I heard back then was this one. Chances are much brighter that the version I first listened to was Billy Vaughn’s, as in here [^].

… A wonderful tune, and, as an added bonus, it never does fail to take me back to my “salad days.” …

… Oh yes, as another fond memory: that vacation also was the very first time that I came to wear a T-shirt; my Mama had gifted it to me in that vacation. The actual choice to buy a T-shirt rather than a shirt (+shorts, of course) was that of my cousin sister (who unfortunately is no more). But I distinctly remember she being surprised to learn that I was in no mood to have a T-shirt when I didn’t know what the word meant… I also distinctly remember her assuring me using sweet tones that a T-shirt would look good on me! … You see, in rural India, at least back then, T-shirts weren’t heard of; for years later on, may be until I went to Nasik in my 10th standard, it would be the only T-shirt I had ever worn. … But, anyway, as far as T-shirts go… well, as you know, I was into software engineering, and so….

Bye [really] for now and take care…]


Machine “Learning”—An Entertainment [Industry] Edition

Yes, “Machine ‘Learning’,” too, has been one of my “research” interests for some time by now. … Machine learning, esp. ANN (Artificial Neural Networks), esp. Deep Learning. …

Yesterday, I wrote a comment about it at iMechanica. Though it was made in a certain technical context, today I thought that the comment could, perhaps, make sense to many of my general readers, too, if I supply a bit of context to it. So, let me report it here (after a bit of editing). But before coming to my comment, let me first give you the context in which it was made:

Context for my iMechanica comment:

It all began with a fellow iMechanician, one Mingchuan Wang, writing a post of the title “Is machine learning a research priority now in mechanics?” at iMechanica [^]. Biswajit Banerjee responded by pointing out that

“Machine learning includes a large set of techniques that can be summarized as curve fitting in high dimensional spaces. [snip] The usefulness of the new techniques [in machine learning] should not be underestimated.” [Emphasis mine.]

Then Biswajit had pointed out an arXiv paper [^] in which machine learning was reported as having produced some good DFT-like simulations for quantum mechanical simulations, too.

A word about DFT for those who (still) don’t know about it:

DFT, i.e. Density Functional Theory, is “formally exact description of a many-body quantum system through the density alone. In practice, approximations are necessary” [^]. DFT thus is a computational technique; it is used for simulating the electronic structure in quantum mechanical systems involving several hundreds of electrons (i.e. hundreds of atoms). Here is the obligatory link to the Wiki [^], though a better introduction perhaps appears here [(.PDF) ^]. Here is a StackExchange on its limitations [^].

Trivia: Kohn and Sham received a Physics Nobel for inventing DFT. It was a very, very rare instance of a Physics Nobel being awarded for an invention—not a discovery. But the Nobel committee, once again, turned out to have put old Nobel’s money in the right place. Even if the work itself was only an invention, it did directly led to a lot of discoveries in condensed matter physics! That was because DFT was fast—it was fast enough that it could bring the physics of the larger quantum systems within the scope of (any) study at all!

And now, it seems, Machine Learning has advanced enough to be able to produce results that are similar to DFT, but without using any QM theory at all! The computer does have to “learn” its “art” (i.e. “skill”), but it does so from the results of previous DFT-based simulations, not from the theory at the base of DFT. But once the computer does that—“learning”—and the paper shows that it is possible for computer to do that—it is able to compute very similar-looking simulations much, much faster than even the rather fast technique of DFT itself.

OK. Context over. Now here in the next section is my yesterday’s comment at iMechanica. (Also note that the previous exchange on this thread at iMechanica had occurred almost a year ago.) Since it has been edited quite a bit, I will not format it using a quotation block.

[An edited version of my comment begins]

A very late comment, but still, just because something struck me only this late… May as well share it….

I think that, as Biswajit points out, it’s a question of matching a technique to an application area where it is likely to be of “good enough” a fit.

I mean to say, consider fluid dynamics, and contrast it to QM.

In (C)FD, the nonlinearity present in the advective term is a major headache. As far as I can gather, this nonlinearity has all but been “proved” as the basic cause behind the phenomenon of turbulence. If so, using machine learning in CFD would be, by the simple-minded “analysis”, a basically hopeless endeavour. The very idea of using a potential presupposes differential linearity. Therefore, machine learning may be thought as viable in computational Quantum Mechanics (viz. DFT), but not in the more mundane, classical mechanical, CFD.

But then, consider the role of the BCs and the ICs in any simulation. It is true that if you don’t handle nonlinearities right, then as the simulation time progresses, errors are soon enough going to multiply (sort of), and lead to a blowup—or at least a dramatic departure from a realistic simulation.

But then, also notice that there still is some small but nonzero interval of time which has to pass before a really bad amplification of the errors actually begins to occur. Now what if a new “BC-IC” gets imposed right within that time-interval—the one which does show “good enough” an accuracy? In this case, you can expect the simulation to remain “sufficiently” realistic-looking for a long, very long time!

Something like that seems to have been the line of thought implicit in the results reported by this paper: [(.PDF) ^].

Machine learning seems to work even in CFD, because in an interactive session, a new “modified BC-IC” is every now and then is manually being introduced by none other than the end-user himself! And, the location of the modification is precisely the region from where the flow in the rest of the domain would get most dominantly affected during the subsequent, small, time evolution.

It’s somewhat like an electron rushing through a cloud chamber. By the uncertainty principle, the electron “path” sure begins to get hazy immediately after it is “measured” (i.e. absorbed and re-emitted) by a vapor molecule at a definite point in space. The uncertainty in the position grows quite rapidly. However, what actually happens in a cloud chamber is that, before this cone of haziness becomes too big, comes along another vapor molecule, and “zaps” i.e. “measures” the electron back on to a classical position. … After a rapid succession of such going-hazy-getting-zapped process, the end result turns out to be a very, very classical-looking (line-like) path—as if the electron always were only a particle, never a wave.

Conclusion? Be realistic about how smart the “dumb” “curve-fitting” involved in machine learning can at all get. Yet, at the same time, also remain open to all the application areas where it can be made it work—even including those areas where, “intuitively”, you wouldn’t expect it to have any chance to work!

[An edited version of my comment is over. Original here at iMechanica [^]]


“Boy, we seem to have covered a lot of STEM territory here… Mechanics, DFT, QM, CFD, nonlinearity. … But where is either the entertainment or the industry you had promised us in the title?”

You might be saying that….

Well, the CFD paper I cited above was about the entertainment industry. It was, in particular, about the computer games industry. Go check out SoHyeon Jeong’s Web site for more cool videos and graphics [^], all using machine learning.

And, here is another instance connected with entertainment, even though now I am going to make it (mostly) explanation-free.

Check out the following piece of art—a watercolor landscape of a monsoon-time but placid sea-side, in fact. Let me just say that a certain famous artist produced it; in any case, the style is plain unmistakable. … Can you name the artist simply by looking at it? See the picture below:

A sea beach in the monsoons. Watercolor.

If you are unable to name the artist, then check out this story here [^], and a previous story here [^].

A Song I Like:

And finally, to those who have always loved Beatles’ songs…

Here is one song which, I am sure, most of you had never heard before. In any case, it came to be distributed only recently. When and where was it recorded? For both the song and its recording details, check out this site: [^]. Here is another story about it: [^]. And, if you liked what you read (and heard), here is some more stuff of the same kind [^].


I am of the Opinion that 99% of the “modern” “artists” and “music composers” ought to be replaced by computers/robots/machines. Whaddya think?

[Credits: “Endgame” used to be the way Mukul Sharma would end his weekly Mindsport column in the yesteryears’ Sunday Times of India. (The column perhaps also used to appear in The Illustrated Weekly of India before ToI began running it; at least I have a vague recollection of something of that sort, though can’t be quite sure. … I would be a school-boy back then, when the Weekly perhaps ran it.)]


Expanding on the procedure of expanding: Where is the procedure to do that?

Update on 18th June 2017:

See the update to the last post; I have added three more diagrams depicting the mathematical abstraction of the problem, and also added a sub-question by way of clarifying the problem a bit. Hopefully, the problem is clearer and also its connection to QM a bit more apparent, now.

Here I partly expand on the problem mentioned in my last post [^]. … Believe me, it will take more than one more post to properly expand on it.

The expansion of an expanding function refers to and therefore requires simultaneous expansions of the expansions in both the space and frequency domains.

The said expansions may be infinite [in procedure].

In the application of the calculus of variations to such a problem [i.e. like the one mentioned in the last post], the most important consideration is the very first part:

Among all the kinematically admissible configurations…

[You fill in the rest, please!]

A Song I Like:

[I shall expand on this bit a bit later on. Done, right today, within an hour.]

(Hindi) “goonji see hai, saari feezaa, jaise bajatee ho…”
Music: Shankar Ahasaan Loy
Singers: Sadhana Sargam, Udit Narayan
Lyrics: Javed Akhtar