# Determinism, Indeterminism, and the nature of the laws of physics…

The laws of physics are causal, but this fact does not imply that they can be used to determine each and everything that you feel should be determinable using them, in each and every context in which they apply. What matters is the nature of the laws themselves. The laws of physics are not literally boundless; nothing in the universe is. They are logically bounded by the kind of abstractions they are.

Let’s take a concrete example.

Take a bottle, pour a little water and detergent in it, shake well, and have fun watching the Technicolor wonder which results. Bubbles form; they show resplendent colors. Then, some of them shrink, others grow, one or two of them eventually collapse, and the rest of the network of the similar bubbles adjusts itself. The process continues.

Looking at it in an idle way can be fun: those colorful tendrils of water sliding over those thin little surfaces, those fascinating hues and geometric patterns… That dynamics which unfolds at such a leisurely pace. … Just watching it all can make for a neat time-sink—at least for a while.

But merely having fun watching bubbles collapse is not physics. Physics proper begins with a lawful description of the many different aspects of the visually evident spectacle—be it the explanation as to how those unreal-looking colors come about, or be it an explanation of the mechanisms involved in their shrinkage or growth, and eventual collapse, … Or, a prediction of exactly which bubble is going to collapse next.

For now, consider the problem of determining, given a configuration of some bubbles at a certain time $t_0$, predicting exactly which bubble is going to collapse next, and why… To solve this problem, we have to study many different processes involved in the bubbles dynamics…

Theories do exist to predict various aspects of the bubble collapse process taken individually. Further it should also be possible to combine them together. The explanation involves such theories as: the Navier-Stokes equations, which govern the flow of soap water in the thin films, and of the motion of the air entrapped within each bubble; the phenomenon of film-breakage, which can involves either the particles-based approaches to modeling of fluids, or, if you insist on a continuum theory, then theories of crack initiatiation and growth in thin lamella/shells; the propagation of a film-breakage, and the propagation of the stress-strain waves associated with the process; and also, theories concerning how the collapse process gets preferentially localized to only one (or at most few) bubbles, which involves again, nonlinear theories from mechanics of materials, and material science.

All these are causal theories. It should also be possible to “throw them together” in a multi-physics simulation.

But even then, they still are not very useful in predicting which bubble in your particular setup is going to collapse next, and when, because not the combination of these theories, but even each theory involved is too complex.

The fact of the matter is, we cannot in practice predict precisely which bubble is going to collapse next.

The reason for our inability to predict, in this context, does not have to do just with the precision of the initial conditions. It’s also their vastness.

And, the known, causal, physical laws which tell us how a sensitive dependence on the smallest changes in the initial conditions deterministically leads to such huge changes in the outcomes, that using these laws to actually make a prediction squarely lies outside of our capacity to calculate.

Even simple (first- or second-order) variations to the initial conditions specified over a very small part of the network can have repercussions for the entire evolution, which is ultimately responsible for predicting which bubble is going to collapse next.

I mention this situation because it is amply illustrative of a special kind of problems which we encounter in physics today. The laws governing the system evolution are known. Yet, in practice, they cannot be applied for performing calculations in every given situation which falls under their purview. The reason for this circumstance is that the very paradigm of formulating physical laws falls short. Let me explain what I mean very briefly here.

All physical laws are essentially quantitative in nature, and can be thought of as “functions,” i.e., as mappings from a specific set of inputs to a specific set of outputs. Since the universe is lawful, given a certain set of values for the inputs, and the specific function (the law) which does the mapping, the output is  uniquely determined. Such a nature of the physical laws has come to be known as determinism. (At least that’s what the working physicist understands by the term “determinism.”) The initial conditions together with the governing equation completely determine the final outcome.

However, there are situations in which even if the laws themselves are deterministic, they still cannot practically be put to use in order to determine the outcomes. One such a situation is what we discussed above: the problem of predicting the next bubble which will collapse.

Where is the catch? It is in here:

When you say that a physical law performs a mapping from a set of input to the set of outputs, this description is actually vastly more general than what appears on the first sight.

Consider another example, the law of Newtonian gravity.

If you have only two bodies interacting gravitationally, i.e., if all other bodies in the universe can be ignored (because their influence on the two bodies is negligibly small in the problem as posed), then the set of the required input data is indeed very small. The system itself is simple because there is only one interaction going on—that between two bodies. The simplicity of the problem design lends a certain simplicity to the system behaviour: If you vary the set of input conditions slightly, then the output changes proportionately. In other words, the change in the output is proportionately small. The system configuration itself is simple enough to ensure that such a linear relation exists between the variations in the input, and the variations in the output. Therefore, in practice, even if you specify the input conditions somewhat loosely, your prediction does err, but not too much. Its error too remains bounded well enough that we can say that the description is deterministic. In other words, we can say that the system is deterministic, only because the input–output mapping is robust under minor changes to the input.

However, if you consider the N-body problem in all its generality, then the very size of the input set itself becomes big. Any two bodies from the N-bodies form a simple interacting pair. But the number of pairs is large, and worse, they all are coupled to each other through the positions of the bodies. Further, the nonlinearities involved in such a problem statement work to take away the robustness in the solution procedure. Not only is the size of the input set big, the end-solution too varies wildly with even a small variation in the input set. If you failed to specify even a single part of the input set to an adequate precision, then the predicted end-state can deterministically become very wildly different. The input–output mapping is deterministic—but it is not robust under minor changes to the input. A small change in the initial angle can lead to an object ending up either on this side of the Sun or that. Small changes produce big variations in predictions.

So, even if the mapping is known and is known to work (deterministically), you still cannot use this “knowledge” to actually perform the mapping from the input to the output, because the mapping is not robust to small variations in the input.

Ditto, for the soap bubbles collapse problem. If you change the initial configuration ever so slightly—e.g., if there was just a small air current in one setup and a more perfect stillness in another setup, it can lead to wildly different predictions as to which bubble will collapse next.

What holds for the N-body problem also holds for the bubble collapse process. The similarity is that these are complex systems. Their parts may be simple, and the physical laws governing such simple parts may be completely deterministic. Yet, there are a great many parts, and they all are coupled together such that a small change in one part—one interaction—gets multiplied and felt in all other parts, making the overall system fragile to small changes in the input specifications.

Let me add: What holds for the N-body problem or the bubble-collapse problems also holds for quantum-mechanical measurement processes. The latter too involves a large number of parts that are nonlinearly coupled to each other, and hence, forms a complex system. It is as futile to expect that you would be able to predict the exact time of the next atomic decay as it is to expect that you will be able to predict which bubble collapses next.

But all the above still does not mean that the laws themselves are indeterministic, or that, therefore, physical theories must be regarded as indeterministic. The complex systems may not be robust. But they still are composed from deterministically operating parts. It’s just that the configuration of these parts is far too complex.

It would be far too naive to think that it should be possible to make exact (non-probabilistic) predictions even in the context of systems that are nonlinear, and whose parts are coupled together in complex manner. It smacks of harboring irresponsible attitudes to take this naive expectation as the standard by which to judge physical theories, and since they don’t come up to your expectations, to jump to the conclusion that physical theories are indeterministic in nature. That’s what has happened to QM.

It should have been clear to the critic of the science that the truth-hood of an assertion (or a law, or a theory) is not subject to whether every complex manner in which it can be recombined with other theoretical elements leads to robust formulations or not. The truth-hood of an assertion is subject only to whether it by itself and in its own context corresponds to reality or not.

The error involved here is similar, in many ways, to expecting that if a substance is good for your health in a certain quantity, then it must be good in every quantity, or that if two medicines are without side-effects when taken individually, they must remain without any harmful effects even when taken in any combination—that there should be no interaction effects. It’s the same error, albeit couched in physicists’ and philosopher’s terms, that’s all.

… Too much emphasis on “math,” and too little an appreciation of the qualitative features, only helps in compounding the error.

A preliminary version of this post appeared as a comment on Roger Schlafly’s blog, here [^]. Schlafly has often wondered about the determinism vs. indeterminism issue on his blog, and often, seems to have taken positions similar to what I expressed here in this post.

The posting of this entry was motivated out of noticing certain remarks in Lee Smolin’s response to The Edge Question, 2013 edition [^], which I recently mentioned at my own blog, here [^].

A song I like:
(Marathi) “kaa re duraavaa, kaa re abolaa…”
Singer: Asha Bhosale

[In the interests of providing better clarity, this post shall undergo further unannounced changes/updates over the due course of time.

Revision history:
2019.04.24 23:05: First published
2019.04.25 14:41: Posted a fully revised and enlarged version.
]

It’s nearing January-end already [^]… I am trying very hard to stay optimistic [^].

BTW, remember: (i) this blog is in copyright, (ii) your feedback is welcome.

A song I like:

(Hindi) “agar main kahoon”
Music: Shankar-Ehsaan-Loy
Lyrics: Javed Akhtar
Singers: Alka Yagnik, Udit Narayan

# An interesting problem from the classical mechanics of vibrations

Update on 18 June 2017:
Added three diagrams depicting the mathematical abstraction of the problem; see near the end of the post. Also added one more consideration by way of an additional question.

TL;DR: A very brief version of this post is now posted at iMechanica; see here [^].

How I happened to come to formulate this problem:

As mentioned in my last post, I had started writing down my answers to the conceptual questions from Eisberg and Resnick’s QM text. However, as soon as I began doing that (typing out my answer to the first question from the first chapter), almost predictably, something else happened.

Since it anyway was QM that I was engaged with, somehow, another issue from QM—one which I had thought about a bit some time ago—happened to now just surface up in my mind. And it was an interesting issue. Back then, I had not thought of reaching an answer, and even now, I realized, I had not very satisfactory answer to it, not even in just conceptual terms. Naturally, my mind remained engaged in thinking about this second QM problem for a while.

In trying to come to terms with this QM problem (of my own making, not E&R’s), I now tried to think of some simple model problem from classical mechanics that might capture at least some aspects of this QM issue. Thinking a bit about it, I realized that I had not read anything about this classical mechanics problem during my [very] limited studies of the classical mechanics.

But since it appeared simple enough—heck, it was just classical mechanics—I now tried to reason through it. I thought I “got” it. But then, right the next day, I began doubting my own answer—with very good reasons.

… By now, I had no option but to keep aside the more scholarly task of writing down answers to the E&R questions. The classical problem of my own making had begun becoming all interesting by itself. Naturally, even though I was not procrastinating, I still got away from E&R—I got diverted.

I made some false starts even in the classical version of the problem, but finally, today, I could find some way through it—one which I think is satisfactory. In this post, I am going to share this classical problem. See if it interests you.

Background:

Consider an idealized string tautly held between two fixed end supports that are a distance $L$ apart; see the figure below. The string can be put into a state of vibrations by plucking it. There is a third support exactly at the middle; it can be removed at will.

Assume all the ideal conditions. For instance, assume perfectly rigid and unyielding supports, and a string that is massive (i.e., one which has a lineal mass density; for simplicity, assume this density to be constant over the entire string length) but having zero thickness. The string also is perfectly elastic and having zero internal friction of any sort. Assume that the string is surrounded by the vacuum (so that the vibrational energy of the string does not leak outside the system). Assume the absence of any other forces such as gravitational, electrical, etc. Also assume that the middle support, when it remains touching the string, does not allow any leakage of the vibrational energy from one part of the string to the other. Feel free to make further suitable assumptions as necessary.

The overall system here consists of the string (sans the supports, whose only role is to provide the necessary boundary conditions).

Initially, the string is stationary. Then, with the middle support touching the string, the left-half of the string is made to undergo oscillations by plucking it somewhere in the left-half only, and immediately releasing it. Denote the instant of the release as, say $t_R$. After the lapse of a sufficiently long time period, assume that the left-half of the system settles down into a steady-state standing wave pattern. Given our assumptions, the right-half of the system continues to remain perfectly stationary.

The internal energy of the system at $t_0$ is $0$. Energy is put into the system only once, at $t_R$, and never again. Thus, for all times $t > t_R$, the system behaves as a thermodynamically isolated system.

For simplicity, assume that the standing waves in the left-half form the fundamental mode for that portion (i.e. for the length $L/2$). Denote the frequency of this fundamental mode as $\nu_H$, and its max. amplitude (measured from the central line) as $A_H$.

Next, at some instant of time $t = t_1$, suppose that the support in the middle is suddenly removed, taking care not to disturb the string in any way in the process. That is to say, we  neither put in any more energy in the system nor take out of it, in the process of removing the middle support.

Once the support is thus removed, the waves from the left-half can now travel to the right-half, get reflected from the right end-support, travel all the way to the left end-support, get reflected there, etc. Thus, they will travel back and forth, in both the directions.

Modeled as a two-point BV/IC problem, assume that the system settles down into a steadily repeating pattern of some kind of standing waves.

The question now is:

What would be the pattern of the standing waves formed in the system at a time $t_F \gg t_1$?

The theory suggests that there is no unique answer!:

Since the support in the middle was exactly at the midpoint, removing it has the effect of suddenly doubling the length for the string.

Now, simple maths of the normal modes tells you that the string can vibrate in the fundamental mode for the entire length, which means: the system should show standing waves of the frequency $\nu_F = \nu_H/2$.

However, there also are other, theoretically conceivable, answers.

For instance, it is also possible that the system gets settled into the first higher-harmonic mode. In the very first higher-harmonic mode, it will maintain the same frequency as earlier, i.e., $\nu_F = \nu_H$, but being an isolated system, it has to conserve its energy, and so, in this higher harmonic mode, it must vibrate with a lower max. amplitude $A_F < A_H$. Thermodynamically speaking, since the energy is conserved also in such a mode, it also should certainly be possible.

In fact, you can take the argument further, and say that any one or all of the higher harmonics (potentially an infinity of them) would be possible. After all, the system does not have to maintain a constant frequency or a constant max. amplitude; it only has to maintain the same energy.

OK. That was the idealized model and its maths. Now let’s turn to reality.

Relevant empirical observations show that only a certain answer gets selected:

What do you actually observe in reality for systems that come close enough to the above mentioned idealized description? Let’s take a range of examples to get an idea of what kind of a show the real world puts up….

Consider, say, a violinist’s performance. He can continuously alter the length of the vibrations with his finger, and thereby produce a continuous spectrum of frequencies. However, at any instant, for any given length for the vibrating part, the most dominant of all such frequencies is, actually, only the fundamental mode for that length.

A real violin does not come very close to our idealized example above. A flute is better, because its spectrum happens to be the purest among all musical instruments. What do we mean by a “pure” tone here? It means this: When a flutist plays a certain tone, say the middle “saa” (i.e. the middle “C”), the sound actually produced by the instrument does not significantly carry any higher harmonics. That is to say, when a flutist plays the middle  “saa,” unlike the other musical instruments, the flute does not inadvertently go on to produce also the “saa”s from any of the higher octaves. Its energy remains very strongly concentrated in only a single tone, here, the middle “saa”. Thus, it is said to be a “pure” tone; it is not “contaminated” by any of the higher harmonics. (As to the lower harmonics for a given length, well, they are ruled out because of the basic physics and maths.)

Now, if you take a flute of a variable length (something like a trumpet) and try very suddenly doubling the length of the vibrating air column, you will find that instead of producing a fainter sound of the same middle “saa”, the flute instead produces the next lower “saa”. (If you want, you can try it out more systematically in the laboratory by taking a telescopic assembly of cylinders and a tuning fork.)

Of course, really speaking, despite its pure tones, even the flute does not come close enough to our idealized description above. For instance, notice that in our idealized description, energy is put into the system only once, at $t_R$, and never again. On the other hand, in playing a violin or a flute we are continuously pumping in some energy; the system is also continuously dissipating its energy to its environment via the sound waves produced in the air. A flute, thus, is an open system; it is not an isolated system. Yet, despite the additional complexity introduced because of an open system, and therefore, perhaps, a greater chance of being drawn into higher harmonic(s), in reality, a variable length flute is always observed to “select” only the fundamental harmonic for a given length.

How about an actual guitar? Same thing. In fact, the guitar comes closest to our idealized description. And if you try out plucking the string once and then, after a while, suddenly removing the finger from a fret, you will find that the guitar too “prefers” to immediately settle down rather in the fundamental harmonic for the new length. (Take an electric guitar so that even as the sound turns fainter and still fainter due to damping, you could still easily make out the change in the dominant tone.)

OK. Enough of empirical observations. Back to the connection of these observations with the theory of physics (and maths).

The question:

Thermodynamically, an infinity of tones are perfectly possible. Maths tells you that these infinity of tones are nothing but the set of the higher harmonics (and nothing else). Yet, in reality, only one tone gets selected. What gives?

What is the missing physics which makes the system get settled into one and only one option—indeed an extreme option—out of an infinity of them of which are, energetically speaking, equally possible?

Update on 18 June 2017:

Here is a statement of the problem in certain essential mathematical terms. See the three figures below:

The initial state of the string is what the following figure (Case 1) depicts. The max. amplitude is 1.0. Though the quiescent part looks longer than half the length, it’s just an illusion of perception.:

Case 1: Fundamental tone for the half length, extended over a half-length

The following figure (Case 2) is the mathematical idealization of the state in which an actual guitar string tends to settle in. Note that the max. amplitude is greater (it’s $\sqrt{2}$) so  as to have the energy of this state the same as that of Case 1.

Case 2: Fundamental tone for the full length, extended over the full length

The following figure (Case 3) depicts what mathematically is also possible for the final system state. However, it’s not observed with actual guitars. Note, here, the frequency is half of that in the Case 1, and the wavelength is doubled. The max. amplitude for this state is less than 1.0 (it’s $\dfrac{1}{\sqrt{2}}$) so as to have this state too carry exactly the same energy as in Case 1.

Case 3: The first overtone for the full length, extended over the full length

Thus, the problem, in short is:

The transition observed in reality is: $T1:$ Case 1 $\rightarrow$ Case 2.

However, the transition $T2:$ Case 1 $\rightarrow$ Case 3 also is possible by the mathematics of standing waves and thermodynamics (or more basically, by that bedrock on which all modern physics rests, viz., the calculus of variations). Yet, it is not observed.

Why does only $T1$ occur? why not $T2$? or even a linear combination of both? That’s the problem, in essence.

While attempting to answer it, also consider this : Can an isolated system like the one depicted in the Case 1 at all undergo a transition of modes?

Enjoy!

Update on 18th June 2017 is over.

That was the classical mechanics problem I said I happened to think of, recently. (And it was the one which took me away from the program of answering the E&R questions.)

Find it interesting? Want to give it a try?

If you do give it a try and if you reach an answer that seems satisfactory to you, then please do drop me a line. We can then cross-check our notes.

And of course, if you find this problem (or something similar) already solved somewhere, then my request to you would be stronger: do let me know about the reference!

In the meanwhile, I will try to go back to (or at least towards) completing the task of answering the E&R questions. [I do, however, also plan to post a slightly edited version of this post at iMechanica.]

Update History:

07 June 2017: Published on this blog

8 June 2017, 12:25 PM, IST: Added the figure and the section headings.

8 June 2017, 15:30 hrs, IST: Added the link to the brief version posted at iMechanica.

18 June 2017, 12:10 hrs, IST: Added the diagrams depicting the mathematical abstraction of the problem.

A Song I Like:

(Marathi) “olyaa saanj veli…”
Music: Avinash-Vishwajeet
Singers: Swapnil Bandodkar, Bela Shende
Lyrics: Ashwini Shende