Some of the implications of the “One Object” idea…

0. Review and Context: This post continues with the subject of one vs. many physical objects. The earlier posts in this series have been, in the chronological and logical order, these:

  1. Introducing a very foundational issue of physics (and of maths) [^]
  2. The One vs. the Many [^]
  3. Some of the implications of the “Many Objects” idea… [^]

In this post, we cover the implications of the second description, i.e., of the “one object” idea.


1. The observed multiplicity of objects as corresponding to certain quantitative differences in the attributes possessed by the universe-object:

In the second description, there exists one and only one object, which is the entire universe itself. This singleton object carries a myriad of attributes—literally each and everything that you ever see/touch/etc. around you (including your physical body) exists as “just” an attribute of this singleton object. In the general case, such attributes exist with quantitatively different degrees in different parts of the singleton universe-object. Those contiguous regions of the singleton object where the quantitative degrees of the given attribute fall sufficiently closer in range are treated by our perceptual faculty as separate objects.

In the general philosophy, there is a certain observation: Everything is interconnected. However, following the second description, not only are all objects interconnected, but at a deeper level, they are literally one and the same object! It’s just that each perceptually separate object has been distinguished on the basis of some quantitative measures (or amounts) of some or the other attribute or property with which that distinguished region exists.

A few consequences are noteworthy.

2. Implications for what precisely the law of causality refers to:

In the second description, what physically exists is the single physical object (that is the physical universe) and nothing else but that physical object.

The physical actor, in the primary sense of the term, therefore always is the entire universe itself, acting as a whole. The “appearance” of multiple objects—and their separate actions—is only a consequence of the universe having varying properties in different parts of or logically within itself.

Just the way the attributes carried by the universe are inhomogeneous (i.e., they differ in quantitative measures over different parts), so are the actions. The quantitative measures of actions too are inhomogeneous. In the general case, for any of the actions taken by the universe, the same action in general occurs to different degrees in different parts.

In the deepest and the most fundamental sense, since there is only one physical actor viz. the entire physical universe, what the law of causality refers to it is nothing but this physical actor, i.e., to the entire universe taken as a whole.

However, since the very nature of the singleton object includes the fact that different parts of itself exist with different attributes of differing degrees and therefore can and do act differently, the law of causality can also be seen to apply, in a secondary or derivative sense, to these distinguishable parts taken in isolation. The differing natures of the inhomogeneous parts together constitute all the causes existing in the physical universe, and the nature of the actions that this singleton object takes, to differing measures in different parts of itself, constitute all the effects.

The fact that the universe-object exists with various physical attributes or properties, leads to different concepts with which the universe-object can be studied.

3. The idea of space as derived from the physical universe:

One most prominent, general and fundamental property which may be used for distinguishing different parts of the universe-object is the fact that the distinguishable parts, taken by themselves, are spatially extended, and the related fact that they carry the attribute of being located where they are.

Locations and extensions are given in the sensory perceptual evidence. Thus, extensions and locations are directly perceived. They in part form the perceptual basis for the concept of space.

Space is an abstract, mathematical concept. Using this higher level concept, we are able to ascribe places even to those combinations of spatial relations where there is no concrete object existing.

4. A (mathematical) space as an abstraction based on certain attributes of the (physical) universe:

The above discussion makes it clear that the universe does not exist in space. On the other hand, space may be said to exist “in” the universe. However, here, here, the word “in” is to be taken in an abstract logical sense, not in the sense of a concrete existence. Space does exist in the universe but not concretely.

Space is an abstraction based on certain fundamental, directly perceived, spatial attributes or properties possessed by the singular universe-object. The two most fundamental of such (spatial) attributes are extensions and locations; other spatial attributes such as connectivity/topology, of being enclosed or covered or placed inside/outside, etc. are merely higher-level ideas that isolate different ways in which groups of objects with various extensions and locations exist. The extensions and locations themselves pertain to certain quantitative but directly perceived differences over different parts of the universe-object. Thus, ultimately, all spatial properties are possessed by the perceptually distinguishable parts of the singleton universe-object.

Since the concept of space is mathematical and abstract, many different ideas or imaginations may be used in formulating the concept of a space. For instance, Euclidean vs. hyperbolic space, or continuous vs. discrete space, etc. Not only that, multiple instances of a given space also are easily possible. In contrast, the idea of instances, of quantities, does not apply to the universe-object; it remains the unique, singular, concept, one which, when taken as a whole, must remain beyond any quantitative characterization.

Since there is nothing but the universe object to exist physically, the only spatially relevant statement we can make about the universe itself is this: if some part of the universe does indeed exist, then this part can be put in a quantitative relation with one of the instances of some or the other space.

The italicized part is based on the assumption that every part of the universe does carry spatial attributes. This itself is just an assumption; there is no way to directly validate it.

Note that the aforementioned statement does not imply that the physical universe can be said as being present everywhere. The universe does not exist everywhere.

To say that the physical universe is present everywhere is an epistemologically misconceived formulation. It is indicative of an intellectually sloppy, inconsistent way of connecting the two ideas: (i) physical universe (which is what actually exists, in the physical sense), and (ii) space (which is a mathematical and abstract concept).

“Everywhere” refers to a set of all possible places implied by a certain concept of space. Physical universe, on the other hand, refers what actually exists. It is possible that the procedure of constructing a concept of space includes places that have no correspondence to any part of the physical universe.

5. A space can be finite or infinite, but the physical universe is neither:

Space, being a mathematical concept, can be imagined as infinitely extended. However, the physical universe cannot be. And the reason that an infinitely extended physical universe is a nonsense idea is not because the physical universe is, or even can be known to be, finite.

The fact of the matter is, no quantitative statement can at all be made in respect of the physical universe taken as a whole.

Quantitative statements can only be made if some suitable mathematical procedure is available for making the requisite measurements. Now, any and all mathematical procedures are constructed only in reference to some or the other parts of the universe, not in reference to the entirety of the universe taken as a whole. The very nature of mathematics is like that. The epistemological procedures of differentiation and integration must first be performed before any mathematical procedure can at all be constructed or applied. (For instance, before inventing or applying even the simplest mathematical procedure of counting, you must have first performed integration of a group of similar concrete objects such as identical balls, and differentiated this group from the background of the rest of the she-bang.) But as soon as you say: “differentiate,” you already concede the idea that the entirety of the universe is not being considered in the further thought. To differentiate is to agree to selectively pick up only a part and thereby to agree to leave some other part(s). So, as soon as you perform differentiation, from that point on, you no longer are referring to all the parts at the same time. That’s why, no concrete mathematical procedure can at all be constructed which possibly can allow you to measure the universe as a whole. The very idea itself does not make sense. There can be a measure for this part of the universe or for that part. But there can be no measure for the universe taken as a whole. That’s why, its meaningless to talk of applying any quantitative attributes to the entirety of the physical universe taken as a whole—including the talk of the universe being even finite in extent.

No procedure can be said to have yielded even a finite amount as a measurement outcome, if the thing asserted as measured is taken to be the universe as a whole. As a result, no statement regarding even finitude can be made for the physical universe. (I here differ from the Objectivist position, e.g., Dr. Peikoff’s writings in OPAR; they believe that the universe is finite.)

It is true that every property shown by every actually observed part of the physical universe is finite. The inference from this statement to the conclusion that every part of the not-actually-observed but in-principle possibly existing part itself must also be finite, also is valid—within its context. However, the validity of this inference cannot be extended to the idea of a mathematical procedure that applies to all the parts of the universe at the same time. The objection is: we cannot speak of “all” parts itself unless we specify a procedure to include and exhaust every existing part—but no such procedure can ever be specified because differentiation and integration are at the base of the very conceptual level (i.e. at the base of every mathematical procedure).

The idea of an infinite physical universe [^] is flawed at a deep level. Infinity is a mathematical concept. Physical universe is what exists. The two cannot be related—there can be no mathematical procedure to relate the two.

Similarly, the idea of a finite physical universe also is flawed at a deep level.

Now, the idea that every part of the physical universe is finite, can be taken to be valid, simply because the procedure of measuring parts can at all be conducted, and such a procedure does in principle yield outcomes that are finite.

To speak of an infinite space, in contrast, also is OK. The idea here is to make a mental note to the effect that any  statements being made for some parts (possibly infinite number of parts) of this space need not have any correspondence with the spatial attributes of the actually existing physical universe-object—that the logical mapping from a part of a space to a physically existing spatial attribute would necessarily break down for every infinite part of an infinite space.

As far as physics is concerned, infinity is only a useful device for simplifying—reifying out—the complications due to certain possible variations in the boundary conditions of physics problems. When the domain is finite, changes in boundary conditions make the problem so complex that is is impossible to yield a law in the form of a differential equation. The idea of an infinite domain allows us to do precisely that. I had covered this aspect in an earlier post, here [^].

6. Implications for the gaps between perceived objects, and the issue of whether empty space plays a causal role or not:

There is no such a thing as a really “empty” part in the physical universe; the idea is a contradiction in terms.

In contrast, on the basis of our above discussion, notice that there can be empty regions of space(s), in fact even infinitely large empty regions of space(s) where literally nothing may be said to exist.

However, the ideas of emptiness or filled-ness can refer only to space, not to the physical universe.

Since there is no empty part in the universe, the issue of what causal role such an empty part can or does play, does not arise. As to the empty regions of space, since there can be no mapping from such regions to the physical universe, once again, the issue of its causal role does not arise. An empty space (or an empty part of a space) does not physically exist, period. Hence, it has no causal role to play, period.

However, if by empty space you mean such things as the region between two grey “objects” (i.e. two grey parts of the physical universe), then: that region is not, really speaking, empty; a part of what actually is the physical universe does exist there; otherwise, during their motions, the grey parts could not have come to occupy this supposedly empty regions of the space. In other words, if literally nothing were to exist in the gap between two objects, then the attribute of grayness could never possibly travel over there. But no such restriction on the movement of distinguishable objects has ever been observed, reported, or rationally conceived of, directly or indirectly. Hence, in conclusion, the gap region is not really speaking empty.

7.  The issue of the local vs. the “non-local” actions:

In the second description, since only one causal agent exists, what-ever physical action happens, it is taken by this one and the only physical universe. As a particular implication of that fact, where-ever any physical action happens, it again is to be attributed to the same physical universe.

In taking a physical action, it is easily conceivable that wherever the physical universe is actually extended, it simultaneously takes action at all those locations—and therefore, in all those abstract places which correspond to these locations.

As a consequence, it is possible that the physical universe simultaneously takes the same action, but to differing degrees, in different places. Since the actor is a singleton, since it anyway is present wherever any action occurs at all, any and all mystification arising from ascribing a cause and its effect to two separate entities simply vaporizes away. So does any and all mystification arising from ascribing a cause and its effect to two spatially separated locations. The locations may be different, but the actor remains the same.

For the above reasons, in the second description, instantaneous action-at-a-distance no longer remains a spooky idea. The reason is: there indeed is no instantaneous action at a distance, really speaking. IAD is only a loose way of saying that there is simultaneous action of, by, in, etc., the same causal (and effectual) actor that is the singleton object of the physical universe.

In fact we can go ahead and even say that in the second description, every action always is necessarily a global action (albeit with zero magnitudes in some parts of the universe); that there is no such a thing as an in-principle local action.

However, the aforementioned statement does not mean that spatially separated causes and effects cannot be observed. All that it means is that such multiple-objects-like phenomena are not primary; they are only higher-level, abstract, consequences of the more fundamental processes that are necessarily global in nature.


In the second post of this series [^], we saw how the grey regions of our illustrative example can be distinguished from each other (and from the background object) by using some critical density value as the criterion of their distinction or separation.

Since the second description involves only a single object, it necessarily requires a procedure for separating this singleton universe-object into multiple objects. There are certain interesting ideas concerning such a separation, and we will have a closer look at this very idea of separation, in the next post.


Of all the posts in this series, it is this post where I remain the most unsatisfied as far as my expression is concerned. I think a lot of simplification is called for. But in the choice between a better but very late expression and a timely but poor, awkward, expression, I have chosen the latter.

May be I will come back later and try to improve the flow and the expression of this post.

Next time,  I will also try to write something on how the two objections to the aether idea (mentioned in the last post) can be overcome.


A Song I Like:

(Marathi) “maajhee na mee raahile”
Music: Bal Parte
Singer: Lata Mangeshkar
Lyrics: Shanta Shelke


[A very minor revision done on 4th May 2017, 15:19 IST. May be, I will effect some more revisions later on.]

Advertisements

Why do physicists use infinity?

This post continues from my last post. In this post, I deal with the question: Even if infinity does not physically exist, why do physicists use it?


The Thermometer Effect

Consider the task of measuring the temperature of a hot body. How do you do that?

The simplest instrument to use would be: a “mercury” thermometer (i.e. of the kind you use when you come down with fever). Heat flows from the hot object to the “mercury” in the thermometer, and so, the temperature of the “mercury” rises. When its temperature increases, the “mercury” expands and so, its level in the tube rises. This rise in the level of the “mercury” can be calibrated to read out the temperature—of the mercury. After a while, the temperatures of the hot object (say the human body) and the thermometer become equal (practically speaking), and so, the calibrated tube gives you a reading of the temperature of the hot object. … We all learnt this in high-school (and many of us understood it (or at least had it explained to us) before the topic was taught to us in the school). What’s new about it?

It’s this (though even this point wouldn’t be new to you; you would have read it in some popular account of quantum mechanics): In the process of measurement, the thermometer takes away some heat from the hot object, and in the process makes the latter’s temperature fall. Therefore, the temperature that is read out refers to the temperature of the {hot object + thermometer} system, not to the initial temperature of the hot object itself. However, we were interested in measuring the temperature only of the hot object, not of the {hot object + thermometer} system.

QM folks, and QM popularizers, habitually go on a trip from this point on. We let them. Our objective is something different, something (hopefully) new. Our objective is the objectivity of measurements in an objectively understandable universe, not a subjective trip into an essentially subjective/unknowable universe. How do we ensure that? How do we ensure the objectivity of the temperature readings?

Enter infinity. Yes. Let me show you how.

We realize that the bigger the thermometer, the bigger is the heat leaked out from the hot object to the thermometer, and therefore, the bigger is the error in the measurement. So, we try something practical and workable. We try a smaller thermometer. Let’s be concrete.

Suppose that the hot object  remains the same for each experiment in this series. Suppose that thermometer T1 holds 10 ml of the sensing liquid, and suppose that at the end of the measurement process, it registers a temperature of 99 C. To decrease the amount of heat leaking into the thermometer, we get a second thermometer, T2; it holds only 1 ml of the sensing liquid. Suppose it registers a temperature of 99.9 C. We know that as the thermometer becomes smaller and still smaller, the reading read off from it will grow ever more accurate. For instance, with development in technology, yet another thermometer T3 may be built. It contains only 0.1 ml of the sensing liquid! It is found to register a temperature of 99.99 C. Etc. Yet, a thermometer of 0 ml liquid is never going to work, in the first place!

So, we do something new. We decide not to remain artificially constrained by the limits of the available technology, because we realize that here we don’t actually have to. We realize that we can take an inductive leap into the abstract. We plot a graph of the measured temperature against the size of the sensing liquid, and find that this graph has begun to “plateau out”. Given the way it is curving, it is obvious that it is coming to a definite limit.

We translate the graph into algebraic terms, i.e., as an infinite sequence, formulated via a general `n’th term. Using calculus, we realize that as `n’ approaches infinity, the amount of the sensing liquid approaches zero, and the temperature T_n registered by the thermometer approaches 100 C.

We thus conclude that in the limit of vanishing quantity of the sensing liquid, the measured temperature would be the true i.e. the unfallen or the initial temperature—viz. 100 C.

Carefully go through the above example. It shows the essence of how physicists use infinity. Indeed, if they were not to do so, they could not tie the purely imagined notion of a true temperature with any actual measurement done with any actual thermometer. Their theories would be either lacking in any generalization concerning temperature measurement, or it would be severed from the physical reality. However, one sure way that they can reach reality-based abstractions is via the idea of infinity. Before the 20th century, they did.


The sound-meter effect

Suppose you have a stereo system installed in your living room. For the sake of argument, just one speaker is enough. The logic here is simply additive: it applies even if you have a stereo system (two speakers) or a surround sound system (5 speakers); just find the effect that a single speaker produces one at a time, and add them all together, that’s all! That’s why, from now on, we consider only a single speaker.

Suppose you play a certain test sound, something like a pure C tone (say, as emitted by a flute), at a certain sound level—i.e. the volume knob on your music system is turned to some specific position, and thus, the energy input to the speaker is some definite fixed quantity.

You want to find out what the intensity of the sound actually emitted by a speaker is, when the volume knob on the music system is kept fixed at a certain fixed position.

Now, you know what the phenomenon of sound is like. It exists as a kind of a field. The sound reaches everywhere in the room. Once it reaches the walls of the room, many things happen. Here is a simplified version: a part of the sound reaching the wall gets reflected back into the room, a part of it gets transmitted beyond the wall (that’s the physical principle on the basis which your neighbors always harass you, but you never ever disturb anyone else’s sleep because that’s what your “dharma,” of course, teaches you), and a part of it gets absorbed by the wall (this is the part that ultimately gets converted into heat, and thereby loses relevance to the phenomenon of sound as such).

Now, if you keep a decibel-meter at some fixed position in the room, then the sound-level registered by it depends on both these factors: the level of the sound directly received from the speaker, as well as the level of the reflected sound. (Yep, we are getting closer to the thermometer logic once again).

Our task here is to find the intensity of the sound emitted by the speaker. To do that, all we have is only the decibel-meter. But the decibel meter is sensitive to two things: the directly received sound, as well as the indirectly received sound, i.e., the reflected sound. What the decibel meter registers thus also includes the effect of the walls of the room.

For instance, if the walls are draped with large, thick curtains, then the effective absorptivity of the walls increases, and so, the intensity of the reflected sound decreases. Or, if the walls are thinner (think the walls of a tent), then the amount leaked out to the environment increases, and therefore, the amount reflected back to the decibel-meter decreases.

The trouble is: we don’t know in advance what kind of a wall it is. We don’t know in advance the laws that apportion the incident sound energy into the reflecting, absorbing and transmitting parts. And therefore, we cannot use the decibel meter to calculate the true intensity of the sound emitted by the speaker itself. Or so it seems.

But here is the way out.

Since we don’t precisely know the laws operative at the wall, altering the material or thickness of the wall is of no use. But what we can do is: we can change the size of the room. This part is in our hands, and we can use it—intelligently.

So, once again, we conduct a series of experiments. We keep everything else the same: the speaker, the position of the decibel-meter relative to the speaker, the position of the volume-level knob, the MP3 file playing the C-note, etc. They all remain the same. The only thing that changes is: the size of the room.

So, suppose we first conduct the experiment in our own living room, and register a decibel meter reading of, say, 110 (in some arbitrary units). Then, we go to a friend’s house; it has bigger rooms. We conduct our experiment there. Suppose the reading is: 108 units. Then, we take the permission of the college lab in-charge, and conduct our experiment in the big laboratory hall: 106 units. We go into an in-door stadium in our town: 102 units. We go into an in-door stadium in another town: 102.5 units. We go out in a big open field out of town, and conduct the experiment at late night: 101.5 units. We go to that open salt field in the rann of the Kutch: 101.1 units. We take the measurement at a high level in the rann: 100.91 units.

Clearly, the nature of the wall has always been effecting our measurements. Clearly, the wall has always been different in different places—and we didn’t have any control over the kind of a wall there may be, neither do we know the kind of laws it follows. And yet, the size of the room has clearly emerged as the trend-setter here.

If we plot the intensity of the sound vs. the size of the room, the trend is not as simple (or monotonic) as in the thermometer case. There are slight ups and downs: even for a room of the same size, different readings do result. Yet, the overall trend is very, very clear. As the size of the room increases, the measurements go closer and closer to: 100 units.

Why? It’s because, choosing a bigger room leads to one definite effect: the effect of the wall on the measured sound level goes on dropping. The drop may be different for different kinds of walls. Yet, as the size of the room becomes really large, whatever be the nature of the wall and whatever be the laws operating at that remote location, they begin to exert smaller and ever so smaller effect on our measurements.

In the limit that the size of the room approaches infinity, the measurement procedure tends to yield an unchanging datum for the intensity of the measured sound. Indeed, in this limit, it would be co-varying with the intensity of the emitted sound, in a most simple, direct, manner. We have, once again, arrived at a stable, orderly datum—even if there were so many things affecting the outcome. We have, once again, managed to reach a universal principle—even if our measurement procedures were constrained by all kinds of limits; all kinds of superfluous influences of the walls.


For the advanced student of science/engineering:

In case you know differential equations (esp. computational modeling), the use of infinity makes the influence of the boundary conditions superfluous.

For instance, take a domain, take the Poisson equation, and use various boundary conditions—absorbing, partially absorbing, periodic, whatever—to find the field strengths at a point within the domain (as controlled by the various boundary conditions). Now, enlarge the domain, and once again try out the same boundary conditions. Go on increasing the domain size. Observe the logic. In the limit that the domain size approaches infinity, the value of the field variable approaches a certain limit—and this limit is given, for the Poisson problem, by the simple inverse-square law!


The Infinity, and Philosophy of Physics:

Increasing the size of the domain to the infinitely large serves the same purpose as does decreasing the amount of the sensing liquid to the infinitely small. The infinitely large or the infinitely small does not exist—the notion has no physical identity. But the physical outcomes in definitely arranged sequences do, and, in fact, even an only imaginary infinite sequence of these does help establish the physical identity of the phenomenon under discussion.

In both cases, infinity allows physicists the formulation of universal laws even if all the preceding empirical measurements are made in reference only to finite systems.

That incidentally is the answer to the question with which we began this post: Even if infinity does not physically exist, why do physicists use it?

It’s because, the idea allows them to objectively isolate the universal phenomena from the local physical experiences.


Homework for you:

In the meanwhile, here are a few questions for you to think about, loosely grouped around two (not unrelated) themes:

Group I: The Argument from the Arbitrary:

Is the question: “Is the physical universe infinite?” invalid? Can it be answered in the yes/no (or true/false) terms alone? Does it involve any arbitrary idea (in Ayn Rand’s sense of the term)? Is the very idea of the arbitrary valid?

Is there any sense to the idea of a finite physical universe?

Is there any sense to the supposition that you could reach the end of the universe?

Group II: The Argument from the Unseen Universe:

Think whether you would refute the following argument, and if yes, how: We cannot rely on physics, because the entirety of physics has been derived only in reference to a finite portion of the universe. Therefore, physics does not represent a truly universal knowledge. Our knowledge, as illustrated by its most famous example viz. physics, has no significance beyond being of a severely limited practical art. Knowledge-wise, it’s not a true form of knowledge; it’s only nominal. Some day it is bound to all break down, as influences from the unseen portion of the universe finally reach us.


Additional homework for the student of quantum mechanics:

Find out the relevance of this post to your course in quantum mechanics, as is covered usually in the universities, (e.g. Griffith’s text).

A Hint: No, this is not a “philosophy” related homework.

Spoiler Alert: Jump to the next section (on songs) if you don’t want to read a further hint, a very loud hint, about this homework.

A Very Loud Hint: Copy paste the following text into a plain text editor (such as the Notepad):

The Sommerfeld radiation condition

The Answer: In the next post, of course!


A Couple of Songs I Don’t Particularly Like:

Both are merely passable.

[This song is calculus-based. Really. In the reel life, it makes a monkey of the dashing young hero (and also of his dog), just the way the calculus does of most any one, in the real life.]

(Hindi) “samundar, samundar, yahaan se wahaa tak…”
Music: S. D. Burman
Singer: Lata Mangeshkar
Lyrics: Anand Bakshi

[This song used to be loved by the Americans (and many others, including Indians) when I was at UAB—and also for some time thereafter. It, or the quotable phrase that its opening line had become, doesn’t find too much of a mention anywhere. … Just the way neither does the phrase: the brave new world!]

(English) “A whole new world…”
Singers: Brad Kane and Lea Salonga
Music: Alan Menken
Lyrics: Tim Rice


[I intended to finish this thread off right in this post, but it grew too big. Further, I will be preoccupied in teaching activities (the beginning time is always the more difficult time), and so, there may be some time before I come back for the next post—may be the next weekend, or possibly even later—even though my attempt always would be to try to wrap this thing off as soon as possible anyway.]
[E&OE]

Is the physical universe infinite?

Is the physical universe infinite? What is the physics-related reason behind the fact that physicists use this term in their theories?

Let’s deal with these two questions one at a time.


Is the physical universe infinite?

This is one question that strikes most people some time in childhood, certainly at least by the time they are into high-school. (By high-school, I mean: standards V through X, both included.) They may not yet know a concept like infinity. But they do wonder about where it all ends.

A naive expectation kept in those years is that as one grows up and learns more, one sure would gain enough knowledge to know a definite answer to that question.

Then, people certainly grow up, and possibly continue learning more, and sometimes even get a PhD in one of the STEM fields. Yet, somewhat oddly, people are found still continuing to think that one day they (or someone else) would be able to at least deal with this question right. If the nature of opinions expressed in the history of science is any indication, for most of them, such a day never comes. So, the quest goes on to continue even further, well after their PhD and all. At least for some of them.

At least, to me, it did. And, I found that there also were at least a few others who had continued attempting an answer. A couple of notable names here would be (in the chronological order in which I ran into their writings): Eric Dennis, and Ron Pisaturo. But of course, their writings was not the first time any clarification had at all arrived; it was Ayn Rand’s ITOE, second edition, in the winter of 1990. In fact, both the former writings were done only in reference to Ayn Rand’s clarifications. (Comparatively very recently, Roger Schlafly’s casual aside threw the matter up once again for me. More on his remark, later.)

Ayn Rand said that the infinity is a concept of method, that it is a concept of mathematics, and that infinity cannot metaphysically exist. Check out at least the Lexicon entry on infinity, here [^].

A wonderful answer, and a wonderful food for some further thought!


The question to deal with, then, immediately becomes this one: If everything that metaphysically exists is finite, including the physical universe, then it is obvious that the physical universe would have to be finite. For physical entities, and therefore for the physical universe, definiteness includes: the definiteness of extension.

If so, what happens when you reach the (or an) end of it? What do you see from that vantage point of view, and looking outward? In fact, Dennis (in a blogsome essay on a Web page he used to maintain as a PhD student—the page is I guess long gone) and Pisaturo (in an essay) have attempted precisely this question.

Guess you have noticed the difficult spot: Seeing is a form of perception, and before you can perceive anything, it must first exist. If the entirety of the universe itself has been exhausted by getting to its edge, and since there is literally nothing left to see on the other side of it, you couldn’t possibly see anything. The imagery of the cliff (complete with that Hollywood/Bollywood sort of a smoke gently flowing out into the abyss at that edge) cannot apply. In principle.

“Huh?”

“Yes.”

“But why not?” The child in you cries out. “I want to see what is there,” it tugs at your heart with a wistful intensity. (In comparison, even the Calvin would be more reasonable—not just with the Hobbes but also with the Susie. (Yes, I think, the use of the the is right, here.))

The answers devised by Pisaturo and Dennis (and I now recollect that the matter was also discussed at the HBL), are worth going through.

I myself had written something similar, and at length (though it must have gone in my recent HDD crash). In fact, many of my positions were quite similar to Pisaturo’s. I, however, never completed writing it;  something else caught my attention and the issue somehow fizzled out. See my incomplete series on the nature of space, for an indication of my positions, starting here [^], and going over the next four posts.


The question grabbed my attention once again, in the recent past.

This time round, I decided to attack it from a different angle: with even more of an emphasis on the physics side of the mathematical vs. physical distinction.

In particular, I thought: If the concept is valid only mathematically and not valid metaphysically (in the sense: infinity does not metaphysically exist), and thus, if it was invalid also physically, then why do physicists use it, in their theories?

Note, my question is not how the physicists use the term “infinity;” it is: why.

It is perfectly fine to pursue the how, but only inasmuch as this pursuit helps clarify anything regarding the why.

I intend to address this question, in the next post. I sure will. It’s just that I want to give your independent thinking a chance. I just want to see if in thinking about it independently, some neat/novel points come up or not.

A little bit of suspense is good, you know… Not too much of it, but just a little bit of it…


A Song I Like:

(Hindi) “saare sapane kahin kho gaye…”
Lyrics: Javed Akhtar
Singer: Alka Yagnik
Music: Raju Singh

[E&OE]