A wish. Looking for a couple of suitable post-docs. Covid-19 in India.

1. A wish…

I wish there were a neat, scholarly, account of the early development regarding the relativity theory. …

… There are tons of material on the topic, but not a single one seems to be to my liking…. I mean, even while rapidly browsing through so many of them, they all seem to fall short—rather, so awfully short. Reason: Most, if not all of them, seem intent on deifying Einstein, and / or, the primacy of maths over physics. [Did I cover all the eigenbases? May be not. So, let me add.] … The worst of them spend themselves out on promoting the idea that coming up with good but radical ideas in physics is all about getting lucky in some day-dreaming involving some mathematical ideas. 

OTOH, The “model” for the book which I have in mind here is something like what Prof. Malcolm Longair has done for QM; see his book: “Quantum concepts in physics: an alternative approach to the understanding of quantum mechanics.” [^].

… High time someone should have undertaken a similar effort. But unfortunately, it’s entirely lacking.

… The wish isn’t without purpose. The more I study the quantum mechanical spin, the more I realize the handicap which I have of not having already studied the relativity theory.

I can always postpone the fully consistent description, following my new approach, for the QM spin. [No one / no organization has ever sponsored my research. [Though, they all are hell bent on “following up” on me.]]

However, now that I have developed (what I believe to be) a good, basic, ontology for the QM phenomena, I have begun to see a promising pathway, at least from the viewpoint of a basic ontology, from a non-relativistic description of QM to a relativistic one—I mean the special relativistic one.


2. Looking for a couple of suitable post-docs…

Another possibility I am toying with, currently, is this:

Over a considerable period of time, say over a year or so, to build a series of Python/C++ scripts/programs that illustrate the classical EM in action, but following my new ontological ideas. These ideas are for the Maxwell-Lorentz EM, but I do anticipate that these would provide the easiest pathway to integrating the Special Relativity with the non-relativistic QM.

The trouble is: I will have to get into the FDTD algorithmics too, and I don’t have the time to do it. (In case you didn’t know, when it comes to EM, the best technique is FDTD.)

Wish I had a competent post-doc—actually two—working simultaneously with me! Right now!!

One could build the above-mentioned FDTD applets, but following the way I want them to be built.

The other one could work on “FEM-ization” of my FDM code (i.e., for the He atom, done with my new approach, and yet to be published). Once he is done, he could explore doing the same with FDTD (yes of course!), and compare and contrast the two. The FEM-ization of my FDM code won’t be very highly demanding, in the sense, people have done the finite elements formulation for the helium atom, and also have implemented it in code—decades ago… But of course, they did so following the mainstream QM. It would be a fun for the post-doc to implement it using the ideas I will be proposing—shortly.

Then, both could work on the ideas for the relativistic QM. … The pace of the work would depend on what they bring to the table, and how they perform.

Fallout? If you are a smart PhD in the concerned areas, I need not provide even a hint about it…


3. Status update on my QM research:

Currently, I am typing a set of notes on the topic of the quantum mechanical angular momentum, including the spin. For the time being, I am mostly following Dan Schroeder’s notes (which I mentioned in the post before the last, here [^]). Once done, I don’t mind uploading these notes—for proofreading by you the potential post-docs. [Who else?]

While typing these notes, it has become once again very clear to me—crystal clear, in fact—as to how my “theory” for the QM spin (following my new approach) falls short. … So short, in fact. … My “theory” doesn’t just look awfully arbitrary; it is so.

All in all, don’t expect the same kind of confidence from me for the spin-related aspects as for the spin-less ones. I mean, in the upcoming document on my new approach.


4. Back to the potential post-docs:

Exciting enough?

If yes, drop me a line. Especially, if you are working with Google / similar company. I gather they officially allow you some fraction of your official time for your own hobby projects too…


5. If you are someone young and enthusiastic, say from the Pune city and all (and in general, from India):

They have relaxed the curbs. However, I have a word of advice for you.

Don’t step out unless absolutely necessary, and if so doing, take all the precautions.

It’s just a matter of a few months now…

…BTW, I am also thinking whether the government shouldn’t relax the enforced gap of three months in between the first and the second dose for the jabs. … There are circumstantial matters which indicate that a gap in between two to three months might be ideal; that three months might be too long a period. (Actually, this matter had struck me right on the day that the Central Government increased the gap from 6 weeks to 12 weeks in one, single, move. …However, at that time, I had thought it prudent to wait and watch. Now, I think I can—nay, should—share my opinon. … I also have some other points about these matters, but these are not so important. I will sure mention these as and when it becomes necessary to do so.)


In the meanwhile, you all take care, and bye for now…


A song I like:

(Hindi) ज़िंदगी आ रहा हूँ मैं… (“zindagi aa rahaa hoon main…”)
Lyrics: Javed Akhtar
Music: Hridaynath Mangeshkar
Singer: Kishore Kumar

[

Credits happily listed in a random order. A good quality audio is here [^]. … Although I haven’t seen this movie, recently I watched the video for this song, and found that I enjoyed it too. A good quality video is here [^].

… I always loved this song, esp. the tune and the arrangement / orchestration. … And of course, Javed Akhtar’s awesome lyrics. … Well, yes, Kishore does sound, at places in this song, just a slight bit… and how shall I put it?… He doesn’t sound as if he were in his best frame of singing, here. His voice sounds a bit too “broad”, and perhaps heavy, and even a bit “tired” perhaps? as if he were straining a bit?…  Even then, of course, being Kishore, he does manage to pull a great job. [It’s just that, knowing Kishore, one wants to note this aside… I know, hair-splitting, it is. … Can’t help. … Sometimes.]

… [BTW, if you are young and dynamic and result-oriented etc.: The guy in this video is Sonam Kapoor’s dad. He used to be young. Once upon time. Me too. [Though I never ever had the hair-style he displays here. A lot of my class-mates did, mostly following The “Bachchan”. Not me. […Yeah, I know.]]

… All the same, all that you’ve to do now is to wait for just a few more months, that’s all… 2021 isn’t a meme on Twitter the way 2020 was. Nevertheless, in India, we have to wait. So, just listen to songs like this for just a wee bit more. … I can tell you, from experience: The scenery, esp. the Sahyaadri’s, does stay great also well until January / February next year. (And if you really love Sahyaadri’s, well, they are there, forever…)

…So there.]

…And if you are new to this song, see if you too like it…

Take care and bye for now…

]

 

Now I am become Bohmianism

1. About the title of this post:

Just before this Diwali, I had tweeted that I had made a resolution. The tweets went like this:

Let me note the text portions of these tweets (just in case I delete these some time later or so).

3:29 PM 13 Nov. 2020:

This year, Pune directly went from the monsoon air to the Diwali air. We seem to have tunnelled through the October heat!

3:55 PM, 13 Nov. 2020:

#Deepavali #Diwali #deepavali2020 #Diwali2020

[Diya lamp emoji, 3 times]

This is the *third* straight Diwali that I go jobless.

3:56 PM, 13 Nov. 2020:

My Diwali Resolution:

“Be a Bohmian (https://www.google.com/search?q=Bohmian+mechanics)

[Yes, there are going to be the usual New Year’s Resolutions according to the Western calender too!]

Alright.

We will come to the “tunnelling” part later. Also, the tweet related to my jobless-ness. [If the Indian IT industry has any sense of shame left at all, they would have prevented this circumstance. But more on this, too, later.]

For the time being, I want to focus on the last tweet, and say that, accordingly:

Now I am become Bohmianism.

As to the quaint grammar used in the expression, first consult this Wired article [^], also the Q&A at the Quora [^].

As to why I use “Bohmianism” instead of “a Bohmian”: Well, to know that, you have to understand Sanskrit. If you do, then refer to the Gita, Chapter 11, verse 32, the compound phrase “कालोऽस्मि” (“kaalo smi”). I just tried to keep a similar grammatical form. … But let me hasten to add that I am not a Sanskrit expert, and so, going wrong is always a possibility. However, I also think that here I have not.

Hence the title of this post.

Now, going over to the Bohmianism i.e. the Bohmian mechanics proper…


2. Material on the Bohmian mechanics (BM):

The following is a partial list of papers and other material on BM that I have downloaded. I am giving you the list in a roughly chronological order. However, my reading isn’t going to be in any particular order. I have not read them all yet. In fact, I’ve just got going with some them, as of now.

Also note, I expect that

  • Some of this material might have become outdated by now
  • I may run into some other related topics as my studies progress

Alright. On to the list…


2.1 Student theses:

Antony Valentini (1992) “On the pilot-wave theory of classical, quantum and subquantum physics,” Ph.D. Thesis, International School for Advanced Studies, Trieste

Caroline Colijn (2003) “The de Broglie-Bohm causal interpretation of quantum mechanics and its application to some simple systems,” Ph.D. Thesis, University of Waterloo.

Paulo Machado (2007) “Computational approach to Bohm’s quantum mechanics,” Ph.D. Thesis, McMaster University

Jeff Timko (2007) “Bohmian trajectories of the two-electron helium atom,” Master’s Thesis, University of Waterloo

Leopold Kellers (2017) “Making use of quantum trajectories for numerical purposes,” Master’s Thesis, Technische Universität München


2.2. Code:

Dane Odekirk (2012) “Python calculations of Bohmian trajectories,” GitHub, 12 December 2012. https://github.com/daneodekirk/bohm


2.3. Papers:

C. Philippidis, C. Dewdney and B. J. Hiley (1978) “Quantum interference and the quantum potential,” https://www.researchgate.net/publication/225228072

Berthold-Georg Englert, Marlan O. Scully, Georg Sussmann and Herbert Walther (1992) “Surrealistic Bohm trajectories,” Z. Naturforsch. 47 a, 1175–1186.

Robert E. Wyatt and Eric R. Bittner (2003) “Quantum mechanics with trajectories: quantum trajectories and adaptive grids,” arXiv:quant-phy/0302088v1 11 Feb 2003

Roderich Tumulka (2004) “Understanding Bohmian mechanics: A dialogue,” Am. J. Phys., vol. 72, no. 9, September 2004, pp. 1220–1226.

D.-A. Deckert, D. Dürr, P. Pickl (2007) “Quantum dynamics with Bohmian trajectories,” arXiv:quant-phy/0701190v2 13 May 2007

Guido Bacciiagaluppi and Antony Valentini (2009) “Quantum theory at the crossroads: Reconsidering the 1927 Solvay conference,” Cambridge UP, ISBN: 9780521814218 arXiv:quant-ph/0609184v2 24 Oct 2009 [Note: This is actually a book.]

M. D. Towler and N. J. Russell (2011) “Timescales for dynamical relaxation to the Born rule,” arXiv:1103.1589v2 [quant-ph] 27 Sep 2011

Michael Esfeld, Dustin Lazarovici, Mario Hubert, Detlef Dürr (2012) “The ontology of Bohmian mechanics,” preprint, British Journal for the Philosophy of Science

Travis Norsen (2013) “The pilot-wave perspective on quantum scattering and tunneling,” m. J. Phys., vol. 81, no. 4, April 2013, pp. 258–266. arXiv:1210.7265v2 [quant-ph] 9 Jan 2013

Travis Norsen (2013) “The pilot-wave perspective on spin,” arXiv:1305.1280v2 [quant-ph] 10 Sep 2013

Kurt Jung (2013) “Is the de Broglie-Bohm interpretation of quantum mechanics really plausible?,” Journal of Physics: Conference Series 442 (2013) 012060 doi:10.1088/1742-6596/442/1/012060

Samuel Colin and Antony Valentini (2014) “Instability of quantum equilibrium in Bohm’s dynamics,” Proc. R. Soc. A 470: 20140288. http://dx.doi.org/10.1098/rspa.2014.0288

W. B. Hodge, S. V. Migirditch and W. C. Kerr (2014) “Electron spin and probability current density in quantum mechanics,” Am. J. Phys., vol. 82, no. 7, July 2014, pp. 681–690

B. Zwiebach (2016) “Lecture 6,” Course Notes for MIT 8.04 Quantum Physics, Spring 2016.

Basil J. Hiley and Peter Van Reeth (2018) “Quantum trajectories: real or surreal?,” Entropy vol. 20, pp. 353 doi:10.3390/e20050353

Oliver Passon (2018) “On a common misconception regarding the de Broglie-Bohm theory,” Entropy vol. 20, no. 440. doi:10.3390/e20060440


2.4. Advanced papers:

Asher Yahalom (2018) “The fluid dynamics of spin,” Molecular Physics, April 2018, doi: 10.1080/00268976.2018.1457808. https://www.researchgate.net/publication/324512014, arXiv:1802:09331v1 [physics.flu-dyn] 3 Feb 2018

Siddhant Das and Detlef Dürr (2019) “Arrival time distributions of spin-1/2 particles,” Scientific Reports, https://doi.org/10.1038/s41598-018-38261-4

Siddhant Das, Markus Nöth, and Detlef Dür (2019) “Exotic Bohmian arrival times of spin-1/2 particles I—An analytical treatment,” arXiv:1901.08672v1 [quant-ph] 24 Jan 2019


2.5. Nonlinearity in the Bohmian mechanics:

To my surprise, I found that a form of non-linearity has been found to come up in the Bohmian mechanics too. I am sure it must have come as a surprise to many others too. [I will comment on this aspect quite some time later. For the time being, let me list some of the papers/presentations I’ve found so far.]

Sheldon Goldstein (1999) “Absence of chaos in Bohmian dynamics,” arXiv:quant-ph/9901005v1 6 Jan 1999

S. Sengupta, A. Poddar and P. K. Chattaraj (2000) “Quantum manifestations of the classical chaos in an undamped Duffing oscillator in presence of an external field: A quantum theory of motion study,” Indian Journal of Chemistry, vol. 39A, Jan–March 2000, pp. 316–322

A. Benseny, G. Albareda, A. S. Sanz, J. Mompart, and X. Oriols (2014) “Applied Bohmian mechanics,” arXiv:1406.3151v1 [quant-ph] 12 Jun 2014

Athanasios C. Tzemos (2016) “The mechanism of chaos in 3-D Bohmian trajectories,” Poster Presentation, https://www.researchgate.net/publication/305317081

Athanasios C. Tzemos (2018) “3-d Bohmian chaos: a short review,” Presentation Slides, RCAAM, Academy Of Athens

Athanasios C. Tzemos (2019) “Quantum entanglement and Bohmian Mechanics,” Presentation Slides 17 July 2019, RCAAM of the Academy of Athens

Klaus von Bloh (2020) “Bohm trajectories for the noncentral Hartmann potential,” Wolfram demonstration projects, https://www.researchgate.net/publication/344171771 (August 2020)

G. Contopoulos and A. C. Tzemos (2020) “Chaos in Bohmian quantum mechanics: a short review,” arXiv:2009.05867v1 [quant-ph] 12 Sep 2020


3. What happens to my new approach?

It was only yesterday that a neat thing struck me. Pending verification via simulations, it has the potential to finally bring together almost all of my research on the spinless particles. I’ve noted this insight in the hand-written journal (i.e. research notebook) that I maintain. I will be developing this idea further too. After all, Bohmians do study mainstream quantum mechanics and other interpretations, don’t they?

Due to the RSI, the simulations, however, will have to wait further. (The status is more or less the same. If I type for 2–3 hours, it’s easily possible that I can’t do much anything for the next 2–3 days.)

OK. Take care and bye for now.


A song I like:

(Hindi) देखा ना हाय रे सोचा ना (“dekhaa naa haay re sochaa naa”)
Singer: Kishore Kumar
Music: R. D. Burman
Lyrics: Rajinder Krishan

[Another song I used to love in my high-school days—who wouldn’t? … And, of course, I still do! A good quality audio I found is here [^]. I had not watched this movie until about a decade ago, on a CD (or may be on the TV). I’ve forgotten the movie by now. I don’t mind giving you the link for the video of this song; see here [^]. (In any case, it’s at least 3 orders of magnitude better than any so-called Lyrical Video Saregama has released for any song. The very idea of the Lyrical is, IMO, moronic.)]

 

 

A general update. Links.

I. A general update regarding my on-going research work (on my new approach to QM):

1.1 How the development is actually proceeding:

I am working through my new approach to QM. These days, I write down something and/or implement some small and simple Python code snippets (< 100 LOC Python code) every day. So, it’s almost on a daily basis that I am grasping something new.

The items of understanding are sometimes related to my own new approach to QM, and at other times, just about the mainstream QM itself. Yes, in the process of establishing a correspondence of my ideas with those of the mainstream QM, I am getting to learn the ideas and procedures from the mainstream QM too, to a better depth. … At other times, I learn something about the correspondence of both the mainstream QM and my approach, with the classical mechanics.

Yes, at times, I also spot some inconsistencies within my own framework! It too happens! I’ve spotted several “misconceptions” that I myself have had—regarding my own approach!

You see, when you are ab initio developing a new theory, it’s impossible to pursue the development of the theory very systematically. It’s impossible to be right about every thing, right from the beginning. That’s because the very theory itself is not fully known to you while you are still developing it! The neatly worked out structure, its best possible presentations, the proper hierarchical relations… all of these emerge only some time later.

Yes, you do have some overall, “vaguish” idea(s) about the major themes that are expected to hold the new theory together. You do know many elements that must be definitely there.

In my case, such essential themes or theoretical elements go, for example, like: the energy conservation principle, the reality of some complex-valued field, the specific (natural) form of the non-linearity which I have proposed, my description of the measurement process and of Born’s postulate, the role that the Eulerian (fixed control volume-based) formulations play in my theorization, etc.

But all these are just elements. Even when tied together, they still amount to only an initial framework. Many of these elements may eventually turn out to play an over-arching role in the finished theory. But during the initial stages (including the stage I am in), you can’t even tell which element is going to play a greater role. All the elements are just loosely (or flexibly) held together in your mind. Such a loosely held set does not qualify to be called a theory. There are lots and lots (and lots) of details that you still don’t even know exist. You come to grasp these only on the fly, only as you are pursuing the “fleshing out” of the “details”.

1.2. Multiple threads of seemingly haphazard threads of thoughts

Once the initial stage gets over, and you are going through the fleshing out stage, the development has a way of progressing on multiple threads of thought, simultaneously.

There are insights or minor developments, or simply new validations of some earlier threads, which occur almost on a daily basis. Each is a separate piece of a small little development; it makes sense to you; and all such small little pieces keep adding up—in your mind and in your notebooks.

Still, there is not much to share with others, simply because in the absence of a knowledge of all that’s going through your mind, any pieces you share are simply going to look as if they were very haphazard, even “random”.

1.3. At this stage, others can easily misunderstand what you mean:

Another thing. There is also a danger that someone may misread you.

For example, because he himself is not clear on many other points which you have not noted explicitly.

Or, may be, you have noted your points somewhere, but he hasn’t yet gone through them. In my case, it is the entirety of my Ontologies series [^]. … Going by the patterns of hits at this blog, I doubt whether any single soul has ever read through them all—apart from me, that is. But this entire series is very much alive in my mind when I note something here or there, including on the Twitter too.

Or, sometimes, there is a worse possibility too: The other person may read what you write quite alright, but what you wrote down itself was somewhat misleading, perhaps even wrong!

Indeed, recently, something of this sort happened when I had a tiny correspondence with someone. I had given a link to my Outline document [^]. He went through it, and then quoted from it in his reply to me. I had said, in the Outline document, that the electrons and protons are classical point-particles. His own position was that they can’t possibly be. … How possibly could I reply him? I actually could not. So, I did not!

I distinctly remember that right when I was writing this point in the Outline document, I had very much hesitated precisely at it. I knew that the word “classical” was going to create a lot of confusions. People use it almost indiscriminately: (i) for the ontology of Newtonian particles, (ii) for the ontology of Newtonian gravity, (iii) for ontology of the Fourier theory (though very few people think of this theory in the context of ontologies), (iv) for ontology of EM as implied by Maxwell, (v) for ontology of EM as Lorentz was striving to get at and succeeded brilliantly in so many essential respects (but not all, IMO), etc.

However, if I were to spend time on getting this portion fully clarified (first to myself, and then for the Outline document), then I also ran the risk of missing out on noting many other important points which also were fairly nascent to me (in the sense, I had not noted them down in a LaTeX document). These points had to be noted on priority, right in the Outline document.

Some of these points were really crucial—the V(x,t) field as being completely specified in reference to the elementary charges alone (i.e. no arbitrary PE fields), the non-linearity in \Psi(x,t), the idea that it is the Instrument’s (or Detector’s) wavefunction which undergoes a catastrophic change—and not the wavefunction of the particle being measured, etc. A lot of such points. These had to be noted, without wasting my time on what precisely I meant when I used the word “classical” for the point-particle of the electron etc.

Yes, I did identify that I the elementary particles were to be taken as conditions in the aether. I did choose the word “background object” merely in order to avoid any confusion with Maxwell’s idea of a mechanical aether. But I myself wasn’t fully clear on all aspects of all the ideas. For instance, I still was not familiar with the differences of Lorentz’ aether from Maxwell’s.

All in all, a document like the Outline document had to be an incomplete document; it had to come out in the nature of a hurried job. In fact, it was so. And I identified it as such.

I myself gained a fuller clarity on many of these issues only while writing the Ontologies series, which happened some 7 months later, after putting out the Outline document online. And, it was even as recently as in the last month (i.e., about 1.5 years after the Outline document) that I was still further revising my ideas regarding the correspondence between QM and CM. … Indeed, this still remains a work in progress… I am maintaining handwritten notes and LaTeX files too (sort of like “journal”s or “diaries”).

All in all, sharing a random snapshot of a work-in-progress always carries such a danger. If you share your ideas too early, while they still are being worked out, you might even end up spreading some wrong notions! And when it comes to theoretical work, there is no product-recall mechanism here—at all! Detrimental to your goals, after all!

1.3 How my blogging is going to go, in the next few weeks:

So, though I am passing through a very exciting phase of development these days, and though I do feel like sharing something or the other on an almost daily basis, when I sit down and think of writing a blog post, unfortunately, I find that there is very little that I can actually share.

For this very reason, my blogging is going to be sparse over the coming weeks.

However, in the meanwhile, I might post some brief entries, especially regarding papers/notes/etc. by others. As in this post.

OTOH, if you want something bigger to think about, see the Q&A answers from my last post here. That material is enough to keep you occupied for a couple of decades or more… I am not joking. That’s what’s happened to others; it has happened to me; and I can guarantee you that it would happen to you too, so long as you keep forgetting whatever you’ve read about my new approach. You could then very easily spend decades and decades (and decades)…

Anyway, coming back to some recent interesting pieces by others…


II. Links:


2.1. Luboš Motl on TerraPower, Inc.:

Dr. Luboš Motl wrote a blog-post of the title “Green scientific illiteracy enters small nuclear reactors, too” [^]. This piece is a comment on TerraPower’s proposal. In case you didn’t know, TerraPower is a pet project of Bill Gates’.

My little note (on the local HDD), upon reading this post, had said something like, “The critics of this idea are right, from an engineering/technological viewpoint.”

In particular, I have too many apprehensions about using liquid sodium. Further, given the risk involved in distributing the sensitive nuclear material over all those geographically dispersed plants, this idea does become, err…, stupid.

In the above post, Motl makes reference to another post of his, one from 2019, regarding the renewable energies like the solar and the wind. The title of this earlier post read: “Bill Gates: advocates of dominant wind & solar energy are imbeciles” [^]. Make sure to go through this one too. The calculation given in it is of a back-of-the-envelop kind, but it also is very impeccable. You can’t find flaw with the calculation itself.

Of course, this does not mean that research on renewable energies should not be pursued. IMO, it should be!

It’s just that I want to point out a few things: (i) Motl chooses the city of Tokyo for his calculation, which IMO would be an extreme case. Tokyo is a very highly dense city—both population-wise and on the count of geographical density of industries (and hence, of industrial power consumption). There can easily be other places where the density of power consumption, and the availability of the natural renewable resources, are better placed together. (ii) Even then, calculations such as that performed by Motl must be included in all analyses—and, the cost of renewable energy must be calculated without factoring in the benefit of government subsidies. … Yes, research on renewable energy would still remain justified. (iii) Personally, I find the idea of converting the wind/solar electricity into hydrogen more attractive. See my 2018 post [^] which had mentioned the idea of using the hydrogen gas as a “flywheel” of sorts, in a distributed system of generation (i.e. without transporting the wind-generated hydrogen itself, over long distances).


2.2. Demonstrations on coupled oscillations and resonance at Harvard:

See this page [^]; the demonstrations are neat.

As to the relevance of this topic to my new approach to QM: The usual description of resonance proceeds by first stating a homogeneous differential equation, and then replacing the zero on the right hand-side with a term that stands for an oscillating driving force [^]. Thus, we specify a force-term for the driver, but the System under study is still being described with the separation vector (i.e. a displacement) as the primary unknown.

Now, just take the driver part of the equation, and think of it as a multi-scaled effect of a very big assemblage of particles whose motions themselves are fundamentally described using exactly the same kind of terms as those for the particles in the System, i.e., using displacements as the primary unknown. It is the multi-scaling procedure which transforms a fundamentally displacement-based description to a basically force-primary description. Got it? Hint below.

[Hint: In the resonance equation, it is assumed that form of the driving force remains exactly the same at all times: with exactly the same F_0, m, and \omega. If you replace the driving part with particles and springs, none of the three parameters characterizing the driving force will remain constant, especially \omega. They all will become functions of time. But we want all the three parameters to stay constant in time. …Now, the real hint: Think of the exact sinusoidal driving force as an abstraction, and multi-scaling as a means of reaching that abstraction.]


2.3 Visualization of physics at the University of St. Andrews:

Again, very neat [^]. The simulations here have very simple GUI, but the design of the applets has been done thoughtfully. The scenarios are at a level more advanced than the QM simulations at PhET, University of Colorado [^].


2.4. The three-body problem:

The nonlinearity in \Psi(x,t) which I have proposed is, in many essential ways, similar to the classical N-body problem.

The simplest classical N-body problem is the 3-body problem. Rhett Allain says that the only way to solve the 3-body problem is numerically [^]. But make sure to at least cursorily note the special solutions mentioned in the Wiki [^]. This Resonance article (.PDF) [^] seems quite comprehensive, though I haven’t gone through it completely. Related, with pictures: A recent report with simulations, for search on “choreographies” (which is a technical term; it refers to trajectories that repeat) [^].

Sure there could be trajectories that repeat for some miniscule number of initial conditions. But the general rule is that the 3-body problem already shows sensitive dependence on initial conditions. Search the ‘net for 4-body, 5-body problems. … In QM, we have 10^{23} particles. Cool, no?


2.5. Academic culture in India:

2.5.1: Max Born in IISc Bangalore:

Check out a blog post/article by Karthik Ramaswamy, of the title “When Raman brought Born to Bangalore” [^]. (H/t Luboš Motl [^].)

2.5.2: Academic culture in India in recent times—a personal experience involving the University of Pune, IIT Bombay, IIT Madras, and IISc Bangalore:

After going through the above story, may I suggest that you also go through my posts on the Mechanical vs. Metallurgy “Branch Jumping” issue. This issue decidedly came up in 2002 and 2003, when I went to IIT Bombay for trying admission to PhD program in Mechanical department. I tried multiple times. They remained adamant throughout the 2002–2003 times. An associate professor from the Mechanical department was willing to become my guide. (We didn’t know each other beforehand.) He fought for me in the department meeting, but unsucessfully. (Drop me a line to know who.) One professor from their CS department, too, sympathetically listened to me. He didn’t understand the Mechanical department’s logic. (Drop me a line to know who.)

Eventually, in 2003, three departments at IISc Bangalore showed definite willingness to admit me.

One was a verbal offer that the Chairman of the SERC made to me, but in the formal interview (after I had on-the-spot cleared their written tests—I didn’t know they were going to hold these). He even offered me a higher-than-normal stipend (in view of my past experience), but he said that the topic of research would have to be one from some 4–5 ongoing research projects. I declined on the spot. (He did show a willingness to wait for a little while, but I respectfully declined it too, because I knew I wanted to develop my own ideas.)

At IISc, there also was a definite willingness to admit me by both their Mechanical and Metallurgy departments. That is, during my official interviews with them (which once again happened after I competitively cleared their separate written tests, being short-listed to within 15 or 20 out of some 180 fresh young MTech’s in Mechanical branch from IISc and IITs—being in software, I had forgotten much of my core engineering). Again, it emerged during my personal interviews with the departmental committees, that I could be in (yes, even in their Mechanical department), provided that I was willing to work on a topic of their choice. I protested a bit, and indicated the loss of my interest right then and there, during both these interviews.

Finally, at around the same time (2003), at IIT Madras, the Metallurgical Engg. department also made an offer to me (after yet another written test—which I knew was going to be held—and an interview with a big committee). They gave me the nod. That is, they would let me pursue my own ideas for my PhD. … I was known to many of them because I had done my MTech right from the same department, some 15–17 years earlier. They recalled, on their own, the hard work which I had put in during my MTech project work. They were quite confident that I could deliver on my topic even if they at that time they (and I!) had only a minimal idea about it.

However, soon enough, Prof. Kajale at COEP agreed to become my official guide at University of Pune. Since it would be convenient for me to remain in Pune (my mother was not keeping well, among other things), I decided to do my PhD from Pune, rather than broach the topic once again at SERC, or straight-away join the IIT Madras program.

Just thought of jotting down the more recent culture at these institutes (at IIT Bombay, IIT Madras, and IISc Bangalore), in COEP, and of course, in the University of Pune. I am sure it’s just a small slice in the culture, just one sample, but it still should be relevant…

Also relevant is this part: Right until I completely left academia for good a couple of years ago, COEP professors and the University of Pune (not to mention UGC and AICTE) continued barring me from becoming an approved professor of mechanical engineering. (It’s the same small set of professors who keep chairing interview processes in all the colleges, even universities. So, yes, the responsibility ultimately lies with a very small group of people from IIT Bombay’s Mechanical department—the Undisputed and Undisputable Leader, and with COEP and University of Pune—the  Faithful Followers of the former).

2.5.3. Dirac in India:

BTW, in India, there used to a monthly magazine called “Science Today.” I vaguely recall that my father used to have a subscription for it right since early 1970s or so. We would eagerly wait for each new monthly issue, especially once I knew enough English (and physics) to be able to more comfortably go through the contents. (My schooling was in Marathi medium, in rural areas.) Of course, my general browsing of this magazine had begun much earlier. [“Science Today” would be published by the Times of India group. Permanently gone are those days!]

I now vaguely remember that one of the issues of “Science Today” had Paul Dirac prominently featured in it. … I can’t any longer remember much anything about it. But by any chance, was it the case that Prof. Dirac was visiting India, may be TIFR Bombay, around that time—say in mid or late 1970s, or early 1980’s? … I tried searching for it on the ‘net, but could not find anything, not within the first couple of pages after a Google search. So, may be, likely, I have confused things. But would sure appreciate pointers to it…

PS: Yes, I found this much:

“During 1973 and 1975 Dirac lectured on the problems of cosmology in the Physical Engineering Institute in Leningrad. Dirac also visited India.’‘ [^].

… Hmm… Somehow, for some odd reason, I get this feeling that the writer of this piece, someone at Vigyan Prasar, New Delhi, must have for long been associated with IIT Bombay (or equivalent thereof). Whaddaya think?


2.6. Jim Baggott’s new book: “Quantum Reality”:

I don’t have the money to buy any books, but if I were to, I would certainly buy three books by Jim Baggott: The present book of the title “Quantum Reality,” as well as a couple of his earlier books: the “40 moments” book and the “Quantum Cookbook.” I have read a lot of pages available at the Google books for all of these three books (may be almost all of the available pages), and from what I read, I am fully confident that buying these books would be money very well spent indeed.

Dr. Sabine Hossenfelder has reviewed this latest book by Baggott, “Quantum Reality,” at the Nautil.us; see “Your guide to the many meanings of quantum mechanics,” here [^]. … I am impressed by it—I mean this review. To paraphrase Hossenfelder herself: “There is nothing funny going on here, in this review. It just, well, feels funny.”

Dr. Peter Woit, too, has reviewed “Quantum Reality” at his blog [^] though in a comparatively brief manner. Make sure to go through the comments after his post, especially the very first comment, the one which concerns classical mechanics, by Matt Grayson [^]. PS: Looks like Baggott himself is answering some of the comments too.

Sometime ago, I read a few blog posts by Baggott. It seemed to me that he is not very well trained in philosophy. It seems that he has read philosophy deeply, but not comprehensively. [I don’t know whether he has read the Objectivist metaphysics and epistemology or not; whether he has gone through the writings/lectures by Ayn Rand, Dr. Leonard Peikoff, Dr. Harry Binswanger and David Harriman or not. I think not. If so, I think that he would surely benefit by this material. As always, you don’t have to agree with the ideas. But yes, the material that I am pointing out is by all means neat enough that I can surely recommend it.]

Coming back to Baggott: I mean to say, he delivers handsomely when (i) he writes books, and (ii) sticks to the physics side of the topics. Or, when he is merely reporting on others’ philosophic positions. (He can condense down their positions in a very neat way.) But in his more leisurely blog posts/articles, and sometimes even in his comments, he does show a tendency to take some philosophic point in a something of a wrong direction, and to belabour on it unnecessarily. That is to say, he does show a certain tendency towards pedantry, as it were.  But let me hasten to add: He seems to show this tendency only in some of his blog-pieces. Somehow, when it comes to writing books, he does not at all show this tendency—well, at least not in the three books I’ve mentioned above.

So, the bottomline is this:

If you have an interest in QM, and if you want a comprehensive coverage of all its interpretations, then this book (“Quantum Reality”) is for you. It is meant for the layman, and also for philosophers.

However, if what you want is a very essentialized account of most all of the crucial moments in the development of QM (with a stress on physics, but with some philosophy also touched on, and with almost no maths), then go buy his “40 Moments” book.

Finally, if you have taken a university course in QM (or are currently taking it), then do make sure to buy his “Cookbook” (published in January this year). From what I have read, I can easily tell: You would be doing yourself a big favour by buying this book. I wish the Cookbook was available to me at least in 2015 if not earlier. But the point is, even after developing my new approach, I am still going to buy it. It achieves a seemingly impossible combination: Something that makes for an easy reading (if you already know the QM) but it will also serve as a permanent reference, something which you can look up any time later on. So, I am going to buy it, once I have the money. Also, “Quantum Reality”, the present book for the layman. Indeed all the three books I mentioned.

(But I am not interested in relativity theory, or QFT, standard model, etc. etc. etc., and so, I will not even look into any books on these topics, written by any one.)


OK then, let me turn back to my work… May be I will come back with some further links in the next post too, may be after 10–15 days. Until then, take care, and bye for now…


A song I like:

(Marathi) घन घन माला नभी दाटल्या (“ghan ghan maalaa nabhee daaTalyaa”)
Singer: Manna Dey
Lyrics: G. D. Madgulkar
Music: Vasant Pawar

[A classic Marathi song. Based on the (Sanskrit, Marathi) राग मल्हार (“raaga” called “Malhaara”). The best quality audio is here [^]. Sung by Manna Dey, a Bengali guy who was famous for his Hindi film songs. … BTW, it’s been a marvellous day today. Clear skies in the morning when I thought of doing a blog post today and was wondering if I should add this song or not. And, by the time I finish it, here are strong showers in all their glory! While my song selection still remains more or less fully random (on the spur of the moment), since I have run so many songs already, there has started coming in a bit of deliberation too—many songs that strike me have already been run!

Since I am going to be away from blogging for a while, and since many of the readers of this blog don’t have the background to appreciate Marathi songs, I may come back and add an additional song, a non-Marathi song, right in this post. If so, the addition would be done within the next two days or so. …Else, just wait until the next post, please! Done, see the song below]


(Hindi) बोल रे पपीहरा (“bol re papiharaa”)
Singer: Vani Jairam
Music: Vasant Desai
Lyrics: Gulzar

[I looked up on the ‘net to see if I can get some Hindi song that is based on the same “raaga”, i.e., “Malhaar” (in general). I found this one, among others. Comparing these two songs should give you some idea about what it means when two songs are said to share the same “raaga”. … As to this song, I should also add that the reason for selecting it had more to do with nostalgia, really speaking. … You can find a good quality audio here [^].

Another thing (that just struck me, on the fly): Somehow, I also thought of all those ladies and gentlemen from the AICTE New Delhi, UGC New Delhi, IIT Bombay’s Mechanical Engg. department, all the professors (like those on R&R committees) from the University of Pune (now called SPPU), and of course, the Mechanical engg. professors from COEP… Also, the Mechanical engineering professors from many other “universities” from the Pune/Mumbai region. … पपीहरा… (“papiharaa”) Aha!… How apt are words!… Excellence! Quality! Research! Innovation! …बोल रे, पपीहरा ऽऽऽ (“bol re papiharaa…”). … No jokes, I had gone jobless for 8+ years the last time I counted…

Anyway, see if you like the song… I do like this song, though, probably, it doesn’t make it to my topmost list. … It has more of a nostalgia value for me…

Anyway, let’s wrap up. Take care and bye for now… ]


History:
— First published: 2020.09.05 18:28 IST.
— Several significant additions revisions till 2020.09.06 01:27 IST.
— Much editing. Added the second song. 2020.09.06 21:40 IST. (Now will leave this post in whatever shape it is in.)