Absolutely Random Notings on QM—Part 1: Bohr. And, a bad philosophy making its way into physics with his work, and his academic influence

TL;DR: Go—and keep—away.


I am still firming up my opinions. However, there is never a harm in launching yet another series of posts on a personal blog, is there? So here we go…


Quantum Mechanics began with Planck. But there was no theory of quanta in what Planck had offered.

What Planck had done was to postulate only the existence of the quanta of the energy, in the cavity radiation.

Einstein used this idea to predict the heat capacities of solids—a remarkable work, one that remains underappreciated in both text-books as well as popular science books on QM.

The first pretense at a quantum theory proper came from Bohr.


Bohr was thinking not about the cavity radiations, but about the spectra of the radiations emitted or absorbed by gases.

Matter, esp. gases, following Dalton, …, Einstein, and Perin, were made of distinct atoms. The properties of gases—especially the reason why they emitted or absorbed radiation only at certain distinct frequencies, but not at any other frequencies (including those continuous patches of frequencies in between the experimentally evident sharp peaks)—had to be explained in reference to what the atoms themselves were like. There was no other way out—not yet, not given the sound epistemology in physics of those days.

Thinking up a new universe still was not allowed back then in science let alone in physics. One still had to clearly think about explaining what was given in observations, what was in evidence. Effects still had be related back to causes; outward actions still had to be related back to the character/nature of the entities that thus acted.

The actor, unquestionably by now, was the atom. The effects were the discrete spectra. Not much else was known.

Those were the days were when the best hotels and restaurants in Berlin, London, and New York would have horse-driven buggies ushering in the socially important guests. Buggies still was the latest technology back then. Not many people thus ushered in are remembered today. But Bohr is.


If the atom was the actor, and the effects under study were the discrete spectra, then what was needed to be said, in theory, was something regarding the structure of the atom.

If an imagined entity sheer by its material/chemical type doesn’t do it, then it’s the structure—its shape and size—which must do it.

Back then, this still was regarded as one of the cardinal principles of science, unlike the mindless opposition to the science of Homeopathy today, esp. in the UK. But back then, it was known that one important reason that Calvin gets harassed by the school bully was that not just the sheer size of the latter’s matter but also that the structure of the latter was different. In other words: If you consumed alcohol, you simply didn’t take in so many atoms of carbon as in proportion to so many atoms of hydrogen, etc. You took in a structure, a configuration with which these atoms came in.


However, the trouble back then was, none had have the means to see the atoms.

If by structure you mean the geometrical shape and size, or some patterns of density, then clearly, there was no experimental observations pertaining to the same. The only relevant observation available to people back then was what had already been encapsulated in Rutherford’s model, viz., the incontestable idea that the atomic nucleus had to be massive and dense, occupying a very small space as compared to an atom taken as a whole; the electrons had to carry very little mass in comparison. (The contrast of Rutherford’s model of c. 1911 was to the earlier plum cake model by Thomson.)

Bohr would, therefore, have to start with Rutherford’s model of atoms, and invent some new ideas concerning it, and see if his model was consistent with the known results given by spectroscopic observations.

What Bohr offered was a model for the electrons contained in a nuclear atom.


However, even while differing from the Rutherford’s plum-cake model, Bohr’s model emphatically lacked a theory for the nature of the electrons themselves. This part has been kept underappreciated by the textbook authors and science teachers.

In particular, Bohr’s theory had absolutely no clue as to the process according to which the electrons could, and must, jump in between their stable orbits.


The meat of the matter was worse, far worse: Bohr had explicitly prohibited from pursuing any mechanism or explanation concerning the quantum jumps—an idea which he was the first to propose. [I don’t know of any one else originally but independently proposing the same idea.]

Bohr achieved this objective not through any deployment of the best possible levels of scientific reason but out of his philosophic convictions—the convictions of the more irrational kind. The quantum jumps were obviously not observable, according to him, only their effects were. So, strictly speaking, the quantum jumps couldn’t possibly be a part of his theory—plain and simple!

But then, Bohr in his philosophic enthusiasm didn’t stop just there. He went even further—much further. He fully deployed the powers of his explicit reasoning as well as the weight of his seniority in prohibiting the young physicists from even thinking of—let alone ideating or offering—any mechanism for such quantum jumps.

In other words, Bohr took special efforts to keep the young quantum enthusiasts absolutely and in principle clueless, as far as his quantum jumps were concerned.


Bohr’s theory, in a sense, was in line with the strictest demands of the philosophy of empiricism. Here is how Bohr’s application of this philosophy went:

  1. This electron—it can be measured!—at this energy level, now!
  2. [May be] The same electron, but this energy level, now!
  3. This energy difference, this frequency. Measured! [Thank you experimental spectroscopists; hats off to you, for, you leave Bohr alone!!]
  4. OK. Now, put the above three into a cohesive “theory.” And, BTW, don’t you ever even try to think about anything else!!

Continuing just a bit on the same lines, Bohr sure would have said (quoting Peikoff’s explanation of the philosophy of empiricism):

  1. [Looking at a tomato] We can only say this much in theory: “This, now, tomato!”
  2. Making a leeway for the most ambitious ones of the ilk: “This *red* tomato!!”

Going by his explicit philosophic convictions, it must have been a height of “speculation” for Bohr to mumble something—anything—about a thing like “orbit.” After all, even by just mentioning a word like “orbit,” Bohr was being absolutely philosophically inconsistent here. Dear reader, observe that the orbit itself never at all was an observable!

Bohr must have in his conscience convulsed at this fact; his own philosophy couldn’t possibly have, strictly speaking, permitted him to accommodate into his theory a non-measurable feature of a non-measurable entity—such as his orbits of his electrons. Only the allure of outwardly producing predictions that matched with the experiment might have quietened his conscience—and that too, temporarily. At least until he got a new stone-building housing an Institute for himself and/or a Physics Nobel, that is.

Possible. With Herr Herr Herr Doktor Doktor Doktor Professor Professors, anything is possible.


It is often remarked that the one curious feature of the Bohr theory was the fact that the stability of the electronic orbits was postulated in it, not explained.

That is, not explained in reference to any known physical principle. The analogy to the solar system indeed was just that: an analogy. It was not a reference to an established physical principle.

However, the basically marvelous feature of the Bohr theory was not that the orbits were stable (in violation of the known laws of electrodynamics). It was: there at all were any orbits in it, even if no experiment had ever given any evidence for the continuously or discontinuously subsequent positions electrons within an atom or of their motions.

So much for originator of the cult of sticking only to the “observables.”


What Sommerfeld did was to add footnotes to Bohr’s work.

Sommerfeld did this work admirably well.

However, what this instance in the history of physics clearly demonstrates is yet another principle from the epistemology of physics: how a man of otherwise enormous mathematical abilities and training (and an academically influential position, I might add), but having evidently no remarkable capacity for a very novel, breakthrough kind of conceptual thinking, just cannot but fall short of making any lasting contributions to physics.

“Math” by itself simply isn’t enough for physics.

What came to be known as the old quantum theory, thus, faced an impasse.

Under Bohr’s (and philosophers’) loving tutorship, the situation continued for a long time—for more than a decade!


A Song I Like:

(Marathi) “sakhi ga murali mohan mohi manaa…”
Music: Hridaynath Mangeshkar
Singer: Asha Bhosale
Lyrics: P. Savalaram


PS: Only typos and animals of the similar ilk remain to be corrected.

 

Advertisements

Off the blog. [“Matter” cannot act “where” it is not.]

I am going to go off the blogging activity in general, and this blog in most particular, for some time. [And, this time round, I will keep my promise.]


The reason is, I’ve just received the shipment of a book which I had ordered about a month ago. Though only about 300 pages in length, it’s going to take me weeks to complete. And, the book is gripping enough, and the issue important enough, that I am not going to let a mere blog or two—or the entire Internet—come in the way.


I had read it once, almost cover-to-cover, some 25 years ago, while I was a student in UAB.

Reading a book cover-to-cover—I mean: in-sequence, and by that I mean: starting from the front-cover and going through the pages in the same sequence as the one in which the book has been written, all the way to the back-cover—was quite odd a thing to have happened with me, at that time. It was quite unlike my usual habits whereby I am more or less always randomly jumping around in a book, even while reading one for the very first time.

But this book was different; it was extraordinarily engaging.

In fact, as I vividly remember, I had just idly picked up this book off a shelf from the Hill library of UAB, for a casual examination, had browsed it a bit, and then had began sampling some passage from nowhere in the middle of the book while standing in an library aisle. Then, some little time later, I was engrossed in reading it—with a folded elbow resting on the shelf, head turned down and resting against a shelf rack (due to a general weakness due to a physical hunger which I was ignoring [and I would have have to go home and cook something for myself; there was none to do that for me; and so, it was easy enough to ignore the hunger]). I don’t honestly remember how the pages turned. But I do remember that I must have already finished some 15-20 pages (all “in-the-order”!) before I even realized that I had been reading this book while still awkwardly resting against that shelf-rack. …

… I checked out the book, and once home [student dormitory], began reading it starting from the very first page. … I took time, days, perhaps weeks. But whatever the length of time that I did take, with this book, I didn’t have to jump around the pages.


The issue that the book dealt with was:

[Instantaneous] Action at a Distance.

The book in question was:

Hesse, Mary B. (1961) “Forces and Fields: The concept of Action at a Distance in the history of physics,” Philosophical Library, Edinburgh and New York.


It was the very first book I had found, I even today distinctly remember, in which someone—someone, anyone, other than me—had cared to think about the issues like the IAD, the concepts like fields and point particles—and had tried to trace their physical roots, to understand the physical origins behind these (and such) mathematical concepts. (And, had chosen to say “concepts” while meaning ones, rather than trying to hide behind poor substitute words like “ideas”, “experiences”, “issues”, “models”, etc.)

Twenty-five years later, I still remain hooked on to the topic. Despite having published a paper on IAD and diffusion [and yes, what the hell, I will say it: despite claiming a first in 200+ years in reference to this topic], I even today do find new things to think about, about this “kutty” [Original: IITM lingo; English translation: “small”] topic. And so, I keep returning to it and thinking about it. I still am able to gain new insights once in an odd while. … Indeed, my recent ‘net search on IAD (the one which led to Hesse and my buying the book) precisely was to see if someone had reported the conceptual [and of course, mathematical] observation which I have recently made, or not. [If too curious about it, the answer: looks like, none has.]


But now coming to Hesse’s writing style, let me quote a passage from one of her research papers. I ran into this paper only recently, last month (in July 2017), and it was while going through it that I happened [once again] to remember her book. Since I did have some money in hand, I did immediately decide to order my copy of this book.

Anyway, the paper I have in mind is this:

Hesse, Mary B. (1955) “Action at a Distance in Classical Physics,” Isis, Vol. 46, No. 4 (Dec., 1955), pp. 337–353, University of Chicago Press/The History of Science Society.

The paper (it has no abstract) begins thus:

The scholastic axiom that “matter cannot act where it is not” is one of the very general metaphysical principles found in science before the seventeenth century which retain their relevance for scientific theory even when the metaphysics itself has been discarded. Other such principles have been fruitful in the development of physics: for example, the “conservation of motion” stated by Descartes and Leibniz, which was generalized and given precision in the nineteenth century as the doctrine of the conservation of energy; …

Here is another passage, once again, from the same paper:

Now Faraday uses a terminology in speaking about the lines of force which is derived from the idea of a bundle of elastic strings stretched under tension from point to point of the field. Thus he speaks of “tension” and “the number of lines” cut by a body moving in the field. Remembering his discussion about contiguous particles of a dielectric medium, one must think of the strings as stretching from one particle of the medium to the next in a straight line, the distance between particles being so small that the line appears as a smooth curve. How seriously does he take this model? Certainly the bundle of elastic strings is nothing like those one can buy at the store. The “number of lines” does not refer to a definite number of discrete material entities, but to the amount of force exerted over a given area in the field. It would not make sense to assign points through which a line passes and points which are free from a line. The field of force is continuous.

See the flow of the writing? the authentic respect for the intellectual history, and yet, the overriding concern for having to reach a conclusion, a meaning? the appreciation for the subtle drama? the clarity of thought, of expression?

Well, these passages were from the paper, but the book itself, too, is similarly written.


Obviously, while I remain engaged in [re-]reading the book [after a gap of 25 years], don’t expect me to blog.

After all, even I cannot act “where” I am not.


A Song I Like:

[I thought a bit between this song and another song, one by R.D. Burman, Gulzar and Lata. In the end, it was this song which won out. As usual, in making my decision, the reference was exclusively made to the respective audio tracks. In fact, in the making of this decision, I happened to have also ignored even the excellent guitar pieces in this song, and the orchestration in general in both. The words and the tune were too well “fused” together in this song; that’s why. I do promise you to run the RD song once I return. In the meanwhile, I don’t at all mind keeping you guessing. Happy guessing!]

(Hindi) “bheegi bheegi…” [“bheege bheege lamhon kee bheegee bheegee yaadein…”]
Music and Lyrics: Kaushal S. Inamdar
Singer: Hamsika Iyer

[Minor additions/editing may follow tomorrow or so.]

 

QM: The physical view it takes—1

So, what exactly is quantum physics like? What is the QM theory all about?

You can approach this question at many levels and from many angles. However, if an engineer were to ask me this question (i.e., an engineer with sufficiently good grasp of mathematics such as differential equations and linear algebra), today, I would answer it in the following way. (I mean only the non-relativistic QM here; relativistic QM is totally beyond me, at least as of today):

Each physics theory takes a certain physical view of the universe, and unless that view can be spelt out in a brief and illuminating manner, anything else that you talk about it (e.g. the maths of the theory) tends to become floating, even meaningless.

So, when we speak of QM, we have to look for a physical view that is at once both sufficiently accurate and highly meaningful intuitively.

But what do I mean by a physical view? Let me spell it out first in the context of classical mechanics so that you get a sense of that term.

Personally, I like to think of separate stages even within classical mechanics.

Consider first the Newtonian mechanics. We can say that the Newtonian mechanics is all about matter and motion. (Maxwell it was, I think, who characterized it in this beautifully illuminating a way.) Newton’s original mechanics was all about the classical bodies. These were primarily discrete—not quite point particles, but finite ones, with each body confined to a finite and isolated region of space. They had no electrical attributes or features (such as charge, current, or magnetic field strength). But they did possess certain dynamical properties, e.g., location, size, density, mass, speed, and most importantly, momentum—which was, using modern terminology, a vector quantity. The continuum (e.g. a fluid) was seen as an extension of the idea of the discrete bodies, and could be studied by regarding an infinitesimal part of the continuum as if it were a discrete body. The freshly invented tools of calculus allowed Newton to take the transition from the discrete bodies (billiard balls) to both: the point-particles (via the shells-argument) as well as to the continuum (e.g. the drag force on a submerged body.)

The next stage was the Euler-Lagrange mechanics. This stage represents no new physics—only a new physical view. The E-L mechanics essentially was about the same kind of physical bodies, but now a number (often somewhat wrongly called a scalar) called energy being taken as the truly fundamental dynamical attribute. The maths involved the so-called variations in a global integral expression involving an energy-function (or other expressions similar to energy), but the crucial dynamic variable in the end would be a mere number; the number would be the outcome of evaluating a definite integral. (Historically, the formalism was developed and applied decades before the term energy could be rigorously isolated, and so, the original writings don’t use the expression “energy-function.” In fact, even today, the general practice is to put the theory using only the mathematical and abstract terms of the “Lagrangian” or the “Hamiltonian.”) While Newton’s own mechanics was necessarily about two (or more) discrete bodies locally interacting with each other (think collisions, friction), the Euler-Lagrange mechanics now was about one discrete body interacting with a global field. This global field could be taken to be mass-less. The idea of a global something (it only later on came to be called a field) was already a sharp departure from the original Newtonian mechanics. The motion of the massive body could be predicted using this kind of a formalism—a formalism that probed certain hypothetical variations in the global field (or, more accurately, in the interactions that the global field had with the given body). The body itself was, however, exactly as in the original Newtonian mechanics: discrete (or spread over definite and delimited region of space), massive, and without any electrical attributes or features.

The next stage, that of the classical electrodynamics, was about the Newtonian massive bodies but now these were also seen as endowed with the electrical attributes in addition to the older dynamical attributes of momentum or energy. The global field now became more complicated than the older gravitational field. The magnetic features, initially regarded as attributes primarily different from the electrical ones, later on came to be understood as a mere consequence of the electrical ones. The field concept was now firmly entrenched in physics, even though not always very well understood for what it actually was: as a mathematical abstraction. Hence the proliferation in the number of physical aethers. People rightly sought the physical referents for the mathematical abstraction of the field, but they wrongly made hasty concretizations, and that’s how there was a number of aethers: an aether of light, an aether of heat, an aether of EM, and so on. Eventually, when the contradictions inherent in the hasty concretizations became apparent, people threw the baby with the water, and it was not long before Einstein (and perhaps Poincare before him) would wrongly declare the universe to be devoid of any form of aether.

I need to check the original writings by Newton, but from whatever I gather (or compile, perhaps erroneously), I think that Newton had no idea of the field. He did originate the idea of the universal gravitation, but not that of the field of gravity. I think he would have always taken gravity to be a force that was directly operating between two discrete massive bodies, in isolation to anything else—i.e., without anything intervening between them (including any kind of a field). Gravity, a force (instantaneously) operating at a distance, would be regarded as a mere extension of the idea of the force by the direct physical contact. Gravity thus would be an effect of some sort of a stretched spring to Newton, a linear element that existed and operated between only two bodies at its two ends. (The idea of a linear element would become explicit in the lines of force in Faraday’s theorization.) It was just that with gravity, the line-like spring was to be taken as invisible. I don’t know, but that seems like a reasonable implicit view that Newton must have adopted. Thus, the idea of the field, even in its most rudimentary form, probably began only with the advent of the Euler-Lagrange mechanics. It anyway reached its full development in Maxwell’s synthesis of electricity and magnetism into electromagnetism. Remove the notion of the field from Maxwell’s theory, and it is impossible for the theory to even get going. Maxwellian EM cannot at all operate without having a field as an intermediate agency transmitting forces between the interacting massive bodies. On the other hand, Newtonian gravity (at least in its original form and at least for simpler problems) can. In Maxwellian EM, if two bodies suddenly change their relative positions, the rest of the universe comes to feel the change because the field which connects them all has changed. In Newtonian gravity, if two bodies suddenly change their relative positions, each of the other bodies in the universe comes to feel it only because its distances from the two bodies have changed—not because there is a field to mediate that change. Thus, there occurs a very definite change in the underlying physical view in this progression from Newton’s mechanics to Euler-Lagrange-Hamilton’s to Maxwell’s.

So, that’s what I mean by the term: a physical view. It is a view of what kind of objects and interactions are first assumed to exist in the universe, before a physics theory can even begin to describe them—i.e., before any postulates can even begin to be formulated. Let me hasten to add that it is a physical view, and not a philosophical view, even though physicists, and worse, mathematicians, often do confuse the issue and call it a (mere) philosophical discussion (if not a digression). (What better can you expect from mathematicians anyway? Or even from physicists?)

Now, what about quantum mechanics? What kind of objects does it deal with, and what kind of a physical view is required in order to appreciate the theory best?

What kind of objects does QM deal with?

QM once again deals with bodies that do have electromagnetic attributes or features—not just the dynamical ones. However, it now seeks to understand and explain how these features come to operate so that certain experimentally observed phenomena such as the cavity radiation and the gas spectra (i.e., the atomic absorption- and emission-spectra) can be predicted with a quantitative accuracy. In the process, QM keeps the idea of the field more or less intact. (No, strictly speaking it doesn’t, but that’s what physicists think anyway). However, the development of the theory was such that it had to bring the idea of the spatially delimited massive body, occupying a definite place and traveling via definite paths, into question. (In fact, quantum physicists went overboard and threw it out quite gleefully, without a thought.) So, that is the kind of “objects” it must assume before its theorization can at all begin. Physicists didn’t exactly understand what they were dealing with, and that’s how arose all its mysteries.

Now, how about its physical view?

In my (by now revised) opinion, quantum mechanics basically is all about the electronic orbitals and their evolutions (i.e., changes in the orbitals, with time).

(I am deliberately using the term “electronic” orbital, and not “atomic” orbital. When you say “atom,” you must mean something that is localized—else, you couldn’t possibly distinguish this object from that at the gross scale. But not so when it is the electronic orbitals. The atomic nucleus, at least in the non-relativistic QM, can be taken to be a localized and discrete “particle,” but the orbitals cannot be. Since the orbitals are necessarily global, since they are necessarily spread everywhere, there is no point in associating something local with them, something like the atom. Hence the usage: electronic orbitals, not atomic orbitals.)

The electronic orbital is a field whose governing equation is the second-order linear PDE that is Schrodinger’s equation, and the problems in the theory involve the usual kind of IVBV problems. But a further complexity arises in QM, because the real-valued orbital density isn’t the primary unknown in Schrodinger’s equation; the primary unknown is the complex-valued wavefunction.

The Schrodinger equation itself is basically like the diffusion equation, but since the primary unknown is complex-valued, it ends up showing some of the features of the wave equation. (That’s one reason. The other reason is, the presence of the potential term. But then, the potential here is the electric potential, and so, once again, indirectly, it has got to do with the complex nature of the wavefunction.) Hence the name “wave equation,” and the term “wavefunction.” (The “wavefunction” could very well have been called the “diffusionfunction,” but Schrodinger chose to call it the wavefunction, anyway.) Check it out:

Here is the diffusion equation:

\dfrac{\partial}{\partial t} \phi = D \nabla^2 \phi
Here is the Schrodinger equation:
\dfrac{\partial}{\partial t} \Psi = \dfrac{i\hbar}{2\mu} \nabla^2 \Psi + V \Psi

You can always work with two coupled real-valued equations instead of the single, complex-valued, Schrodinger’s equation, but it is mathematically more convenient to deal with it in the complex-valued form. If you were instead to work with the two coupled real-valued  equations, they would still end up giving you exactly the same results as the Schrodinger equation. You will still get the Maxwellian EM after conducting suitable grossing out processes. Yes, Schrodinger’s equation must give rise to the Maxwell’s equations. The two coupled real-valued equations would give you that (and also everything else that the complex-valued Schrodinger’s equation does). Now, Maxwell’s equations do have an inherent  coupling between the electric and magnetic fields. This, incidentally, is the simplest way to understand why the wavefunction must be complex-valued. [From now on, don’t entertain the descriptions like: “Why do the amplitudes have to be complex? I don’t know. No one knows. No one can know.” etc.]

But yes, speaking in overall terms, QM is, basically, all about the electronic orbitals and the changes in them. That is the physical view QM takes.

Hold that line in your mind any time you hit QM, and it will save you a lot of trouble.

When it comes to the basics or the core (or the “heart”) of QM, physicists will never give you the above answer. They will give you a lot many other answers, but never this one. For instance, Richard Feynman thought that the wave-particle duality (as illustrated by the single-particle double-slit interference arrangement) was the real key to understanding the QM theory. Bohr and Heisenberg instead believed that the primacy of the observables and the principle of the uncertainty formed the necessary key. Einstein believed that entanglement was the key—and therefore spent his time using this feature of the QM to deny completeness to the QM theory. (He was right; QM is not complete. He was not on the target, however; entanglement is merely an outcome, not a primary feature of the QM theory.)

They were all (at least partly) correct, but none of their approaches is truly illuminating—not to an engineer anyway.

They were correct in the sense, these indeed are valid features of QM—and they do form some of the most mystifying aspects of the theory. But they are mystifying only to an intuition that is developed in the classical mechanical mould. In any case, don’t mistake these mystifying features for the basic nature of the core of the theory. Discussions couched in terms of the more mysterious-appearing features in fact have come to complicate the quantum story unnecessarily; not helped simplify it. The actual nature of the theory is much more simple than what physicists have told you.

Just the way the field in the EM theory is not exactly the same kind of a continuum as in the original Newtonian mechanics (e.g., in EM it is mass-less, unlike water), similarly, neither the field nor the massive object of the QM is exactly as in their classical EM descriptions. It can’t be expected to be.

QM is about some new kinds of the ultimate theoretical objects (or building blocks) that especially (but not exclusively) make their peculiarities felt at the microscopic (or atomic) scale. These theoretical objects carry certain properties such that the theoretical objects go on to constitute the observed classical bodies, and their interactions go on to produce the observed classical EM phenomena. However, the new theoretical objects are such that they themselves do not (and cannot be expected to) possess all the features of the classical objects. These new theoretical objects are to be taken as more fundamental than the objects theorized in the classical mechanics. (The physical entities in the classical mechanics are: the classical massive objects and the classical EM field).

Now, this description is quite handful; it’s not easy to keep in mind. One needs a simpler view so that it can be held and recalled easily. And that simpler view is what I’ve told you already:

To repeat: QM is all about the electronic orbital and the changes it undergoes over time.

Today, most any physics professor would find this view objectionable. He would feel that it is not even a physics-based view, it is a chemistry-based one, even if the unsteady or the transient aspect is present in the formulation. He would feel that the unsteady aspect in the formulation is artificial; it is more or less slapped externally on to the picture of the steady-state orbitals given in the chemistry textbooks, almost as an afterthought of sorts. In any case, it is not physics—that’s what he would be sure of. By that, he would also be sure to mean that this view is not sufficiently mathematical. He might even find it amusing that a physical view of QM can be this intuitively understandable. And then, if you ask him for a sufficiently physics-like view of QM, he would tell you that a certain set of postulates is what constitutes the real core of the QM theory.

Well, the QM postulates indeed are the starting points of QM theory. But they are too abstract to give you an overall feel for what the theory is about. I assert that keeping the orbitals always at the back of your mind helps give you that necessary physical feel.

OK, so, keeping orbitals at the back of the mind, how do we now explain the wave-particle duality in the single-photon double-slit interference experiment?

Let me stop here for this post; I will open my next post on this topic precisely with that question.


A Song I Like:

(Hindi) “ik ajeeb udaasi hai, meraa man_ banawaasi hai…”
Music: Salil Chowdhury
Singer: Sayontoni Mazumdar
Lyrics: (??)

[No, you (very probably) never heard this song before. It comes not from a regular film, but supposedly from a tele-film that goes by the name “Vijaya,” which was produced/directed by one Krishna Raaghav. (I haven’t seen it, but gather that it was based on a novel of the same name by Sharat Chandra Chattopadhyaya. (Bongs, I think, over-estimate this novelist. His other novel is Devadaas. Yes, Devadaas. … Now you know. About the Chattopadhyaya.)) Anyway, as to this song itself, well, Salil-daa’s stamp is absolutely unmistakable. (If the Marathi listener feels that the flute piece appearing at the very beginning somehow sounds familiar, and then recalls the flute in Hridayanath Mangeshkar’s “mogaraa phulalaa,” then I want to point out that it was Hridayanath who once assisted Salil-daa, not the other way around.) IMO, this song is just great. The tune may perhaps sound like the usual ghazal-like tune, but the orchestration—it’s just extraordinary, sensitive, and overall, absolutely superb. This song in fact is one of Salil-daa’s all-time bests, IMO. … I don’t know who penned the lyrics, but they too are great. … Hint: Listen to this song on high-quality head-phones, not on the loud-speakers, and only when you are all alone, all by yourself—and especially as you are nursing your favorite Sundowner—and especially during the times when you are going jobless. … Try it, some such a time…. Take care, and bye for now]

[E&OE]

A bit about my trade…

Even while enjoying my writer’s block, I still won’t disappoint you. … My browsing has yielded some material, and I am going to share it with you.

It all began with googling for some notes on CFD. One thing led to another, and soon enough, I was at this page [^] maintained by Prof. Praveen Chandrashekhar of TIFR Bangalore.

Do go through the aforementioned link; highly recommended. It tells you about the nature of my trade [CFD]…

As that page notes, this article had first appeared in the AIAA Student Journal. Looking at the particulars of the anachronisms, I wanted to know the precise date of the writing. Googling on the title of the article led me to a PDF document which was hidden under a “webpage-old” sub-directory, for the web pages for the ME608 course offered by Prof. Jayathi Murthy at Purdue [^]. At the bottom of this PDF document is a note that the AIAA article had appeared in the Summer of 1985. … Hmm…. Sounds right.

If you enjoy your writer’s block [the way I do], one sure way to continue having it intact is to continue googling. You are guaranteed never to come out it. I mean to say, at least as far as I know, there is no equivalent of Godwin’s law [^] on the browsing side.

Anyway, so, what I next googled on was: “wind tunnels.” I was expecting to see the Wright brothers as the inventors of the idea. Well, I was proved wrong. The history section on the Wiki page [^] mentions Benjamin Robins and his “whirling arm” apparatus to determine drag. The reference for this fact goes to a book bearing the title “Mathematical Tracts of the late Benjamin Robins, Esq,” published, I gathered, in 1761. The description of the reference adds the sub-title (or the chapter title): “An account of the experiments, relating to the resistance of the air, exhibited at different times before the Royal Society, in the year 1746.” [The emphasis in the italics is mine, of course! [Couldn’t you have just guessed it?]]

Since I didn’t know anything about the “whirling arm,” and since the Wiki article didn’t explain it either, a continuation of googling was entirely in order. [The other reason was what I’ve told you already: I was enjoying my writer’s block, and didn’t want it to go away—not so soon, anyway.] The fallout of the search was one k-12 level page maintained by NASA [^]. Typical of the government-run NASA, there was no diagram to illustrate the text. … So I quickly closed the tab, came back to the next entries in the search results, and landed on this blog post [^] by “Gina.” The name of the blog was “Fluids in motion.”

… Interesting…. You know, I knew about, you know, “Fuck Yeah Fluid Dynamics” [^] (which is a major time- and bandwidth-sink) but not about “Fluids in motion.” So I had to browse the new blog, too. [As to the FYFD, I only today discovered the origin of the peculiar name; it is given in the Science mag story here [^].]

Anyway, coming back to Gina’s blog, I then clicked on the “fluids” category, and landed here [^]… Turns out that Gina’s is a less demanding on the bandwidth, as compared to FYFD. [… I happen to have nearly exhausted my monthly data limit of 10 GB, and the monthly renewal is on the 5th June. …. Sigh!…]

Anyway, so here I was, at Gina’s blog, and the first post in the “fluids” category was on “murmuration of starlings,” [^]. There was a link to a video… Video… Video? … Intermediate Conclusion: Writer’s blocks are costly. … Soon after, a quiet temptation thought: I must get to know what the phrase “murmuration of starlings” means. … A weighing in of the options, and the final conclusion: what the hell! [what else], I will buy an extra 1 or 2 GB add-on pack, but I gotta see that video. [Writer’s block, I told you, is enjoyable.] … Anyway, go, watch that video. It’s awesome. Also, Gina’s book “Modeling Ships and Space Craft.” It too seems to be awesome: [^] and [^].

The only way to avoid further spending on the bandwidth was to get out of my writer’s block. Somehow.

So, I browsed a bit on the term [^], and took the links on the first page of this search. To my dismay, I found that not even a single piece was helpful to me, because none was relevant to my situation: every piece of advice there was obviously written only after assuming that you are not enjoying your writer’s block. But what if you do? …

Anyway, I had to avoid any further expenditure on the bandwidth—my expenditure—and so, I had to get out of my writer’s block.

So, I wrote something—this post!


[Blogging will continue to remain sparse. … Humor apart, I am in the middle of writing some C++ code, and it is enjoyable but demanding on my time. I will remain busy with this code until at least the middle of June. So, expect the next post only around that time.]

[May be one more editing pass tomorrow… Done.]

[E&OE]