Blogging some crap…

I had taken a vow not to blog very frequently any more—certainly not any more at least right this month, in April.

But then, I am known to break my own rules.

Still, guess I really am coming to a point where quite a few threads on which I wanted to blog are, somehow, sort of coming to an end, and fresh topics are still too fresh to write anything about.

So, the only things to blog about would be crap. Thus the title of this post.

Anyway, here is an update of my interests, and the reason why it actually is, and also would be, difficult for me to blog very regularly in the near future of months, may be even a year or so. [I am being serious.]

1. About micro-level water resources engineering:

Recently, I blogged a lot about it. Now, I think I have more or less completed my preliminary studies, and pursuing anything further would take a definitely targeted and detailed research—something that only can be pursued once I have a master’s or PhD student to guide. Which will only happen once I have a job. Which will only happen in July (when the next academic term of the University of Mumbai begins).

There is only one idea that I might mention for now.

I have installed QGIS, and worked through the relevant exercises to familiarize myself with it. Ujaval Gandhi’s tutorials are absolutely great in this respect.

The idea I can blog about right away is this. As I mentioned earlier, DEM maps with 5 m resolution are impossible to find. I asked my father to see if he had any detailed map at sub-talukaa level. He gave me an old official map from GSI; it is on a 1:50000 scale, with contours at 20 m. Pretty detailed, but still, since we are looking for check-dams of heights up to 10 m, not so helpful. So, I thought of interpolating contours, and the best way to do it would be through some automatic algorithms. The map anyway has to be digitized first.

That means, scan it at a high enough resolution, and then perform a raster to vector conversion so that DEM heightfields could be viewed in QGIS.

The trouble is, the contour lines are too faint. That means, automatic image processing to extract the existing contours would be of limited help. So, I thought of an idea: why not lay a tracing paper on top, and trace out only the contours using black pen, and then, separately scan it? It was this idea that was already mentioned in an official Marathi document by the irrigation department.

Of course, they didn’t mean to go further and do the raster-to-vector conversion and all.  I would want to adapt/create algorithms that could simulate rainfall run-offs after high intensity sporadic rains, possibly leading also to flooding. I also wanted to build algorithms that would allow estimates of volumes of water in a check dam before and after evaporation and seepage. (Seepage calculations would be done, as a first step, after homogenizing the local geology; the local geology could enter the computations at a more advanced stage of the research.) A PhD student at IIT Bombay has done some work in this direction, and I wanted to independently probe these issues. I could always use raster algorithms, but since the size of the map would be huge, I thought that the vector format would be more efficient for some of these algorithms. Thus, I had to pursue the raster-to-vector conversion.

So I did some search in this respect, and found some papers and even open source software. For instance, Peter Selinger’s POTrace, and the further off-shoots from it.

I then realized that since the contour lines in the scanned image (whether original or traced) wouldn’t be just one-pixel wide, I would have to run some kind of a line thinning algorithm.

Suitable ready made solutions are absent and building one from the scratch would be too time consuming—it can possibly be a good topic for a master’s project in the CS/Mech departments, in the computer graphics field. Here is one idea I saw implemented somewhere. To fix our imagination, launch MS Paint (or GIMP on Ubuntu), and manually draw a curve in a thick brush, or type a letter in a huge font like 48 points or so, and save the BMP file. Our objective is to make a single pixel-thick line drawing out of this thick diagram. The CS folks apparently call it the centerlining algorithm. The idea I saw implemented was something like this: (i) Do edge detection to get single pixel wide boundaries. The “filled” letter in the BMP file would now become “hollow;” it would have only the outlines that are single pixel wide. (ii) Do raster-to-vector conversion, say using POTrace, on this hollow letter. You would thus have a polygon representation for the letter. (iii) Run a meshing software (e.g. Jonathan Schewchuk’s Triangle, or something in the CGAL library) to fill the interior parts of this hollow polygon with a single layer of triangles. (iv) Find the centroids of all these triangles, and connect them together. This will get us the line running through the central portions of each arm of the letter diagram. Keep this line and delete the triangles. What you have now got is a single pixel-wide vector representation of what once was a thick letter—or a contour line in the scanned image.

Sine this algorithm seemed too complicated, I thought whether it won’t be possible to simply apply a suitable diffusion algorithm to simply erode away the thickness of the line. For instance, think that the thick-walled letter is initially made uniformly cold, and then it is placed in uniformly heated surroundings. Since the heat enters from boundaries, the outer portions become hotter than the interior. As the temperature goes on increasing, imagine the thick line to begin to melt. As soon as a pixel melts, check whether there is any solid pixel still left in its neighbourhood or not. If yes, remove the molten pixel from the thick line. In the end, you would get a raster representation one pixel thick. You can easily convert it to the vector representation. This is a simplified version of the algorithm I had implemented for my paper on the melting snowman, with that check for neighbouring solid pixels now being thrown in.

Pursuing either would be too much work for the time being; I could either offload it to a student for his project, or work on it at a later date.

Thus ended my present thinking line on the micro-level water-resources engineering.

2. Quantum mechanics:

You knew that I was fooling you when I had noted in my post dated the first of April this year, that:

“in the course of attempting to build a computer simulation, I have now come to notice a certain set of factors which indicate that there is a scope to formulate a rigorous theorem to the effect that it will always be logically impossible to remove all the mysteries of quantum mechanics.”

Guess people know me too well—none fell for it.

Well, though I haven’t quite built a simulation, I have been toying with certain ideas about simulating quantum phenomena using what seems to be a new fluid dynamical model. (I think I had mentioned about using CFD to do QM, on my blog here a little while ago).

I pursued this idea, and found that it indeed should reproduce all the supposed weirdities of QM. But then I also found that this model looks a bit too contrived for my own liking. It’s just not simple enough. So, I have to think more about it, before allocating any specific or concrete research activities about it.

That is another dead-end, as far as blogging is concerned.

However, in the meanwhile, if you must have something interesting related to QM, check out David Hestenes’ work. Pretty good, if you ask me.

OK. Physicists, go away.

3. Homeopathy:

I had ideas about computational modelling for the homeopathic effect. By homeopathy, I mean: the hypothesis that water is capable of storing an “imprint” or “memory” of a foreign substance via structuring of its dipole molecules.

I have blogged about this topic before. I had ideas of doing some molecular dynamics kind of modelling. However, I now realize that given the current computational power, any MD modelling would be for far too short time periods. I am not sure how useful that would be, if some good scheme (say a variational scheme) for coarse-graining or coupling coarse-grained simulation with the fine-grained MD simulation isn’t available.

Anyway, I didn’t have much time available to look into these aspects. And so, there goes another line of research; I don’t have much to do blogging about it.

4. CFD:

This is one more line of research/work for me. Indeed, as far as my professional (academic research) activities go, this one is probably the most important line.

Here, too, there isn’t much left to blog about, even if I have been pursuing some definite work about it.

I would like to model some rheological flows as they occur in ceramics processing, starting with ceramic injection moulding. A friend of mine at IIT Bombay has been working in this area, and I should have easy access to the available experimental data. The phenomenon, of course, is much too complex; I doubt whether an institute with relatively modest means like an IIT could possibly conduct experimentation to all the required level of accuracy or sophistication. Accurate instrumentation means money. In India, money is always much more limited, as compared to, say, in the USA—the place where neither money nor dumbness is ever in short supply.

But the problem is very interesting to a computational engineer like me. Here goes a brief description, suitably simplified (but hopefully not too dumbed down (even if I do have American readers on this blog)).

Take a little bit of wax in a small pot, melt it, and mix some fine sand into it. The paste should have the consistency of a toothpaste (the limestone version, not the gel version). Just like you pinch on the toothpaste tube and pops out the paste—technically this is called an extrusion process—similarly, you have a cylinder and ram arrangement that holds this (molten wax+sand) paste and injects it into a mould cavity. The mould is metallic; aluminium alloys are often used in research because making a precision die in aluminium is less expensive. The hot molten wax+ceramic paste is pushed into the mould cavity under pressure, and fills it. Since the mould is cold, it takes out the heat from the paste, and so the paste solidifies. You then open the mould, take out the part, and sinter it. During sintering, the wax melts and evaporates, and then the sand (ceramic) gets bound together by various sintering mechanism. Materials engineers focus on the entire process from a processing viewpoint. As a computational engineer, my focus is only up to the point that the paste solidifies. So many interesting things happen up to that point that it already makes my plate too full. Here is an indication.

The paste is a rheological material. Its flow is non-Newtonian. (There sinks in his chair your friendly computational fluid dynamicist—his typical software cannot handle non-Newtonian fluids.) If you want to know, this wax+sand paste shows a shear-thinning behaviour (which is in contrast to the shear-thickening behaviour shown by, say, corn syrup).

Further, the flow of the paste involves moving boundaries, with pronounced surface effects, as well as coalescence or merging of boundaries when streams progressing on different arms of the cavity eventually come together during the filling process. (Imagine the simplest mould cavity in the shape of an O-ring. The paste is introduced from one side, say from the dash placed on the left hand side of the cavity, as shown here: “-O”. First, after entering the cavity, the paste has to diverge into the upper and lower arms, and as the cavity filling progresses, the two arms then come together on the rightmost parts of the “O” cavity.)

Modelling moving boundaries is a challenge. No textbook on CFD would even hint at how to handle it right, because all of them are based on rocket science (i.e. the aerodynamics research that NASA and others did from fifties onwards). It’s a curious fact that aeroplanes always fly in air. They never fly at the boundary of air and vacuum. So, an aeronautical engineer never has to worry about a moving fluid boundary problem. Naval engineers have a completely different approach; they have to model a fluid flow that is only near a surface—they can afford to ignore what happens to the fluid that lies any deeper than a few characteristic lengths of their ships. Handling both moving boundaries and interiors of fluids at the same time with sufficient accuracy, therefore, is a pretty good challenge. Ask any people doing CFD research in casting simulation.

But simulation of the flow of the molten iron in gravity sand-casting is, relatively, a less complex problem. Do dimensional analysis and verify that molten iron has the same fluid dynamical characteristics as that of the plain water. In other words, you can always look at how water flows inside a cavity, and the flow pattern would remain exactly the same also for molten iron, even if the metal is so heavy. Implication, surface tension effects are OK to handle for the flow of molten iron. Also, pressures are negligibly small in gravity casting.

But rheological paste being too thick, and it flowing under pressure, handling the surface tensions effect right should be even bigger a challenge. Especially at those points where multiple streams join together, under pressure.

Then, there is also heat transfer. You can’t get away doing only momentum equations; you have to couple in the energy equations too. And, the heat transfer obviously isn’t steady-state; it’s necessarily transient—the whole process of cavity filling and paste solidification gets over within a few seconds, sometimes within even a fraction of a second.

And then, there is this phase change from the liquid state to the solid state too. Yet another complication for the computational engineer.

Why should he address the problem in the first place?

Good question. Answer is: Economics.

If the die design isn’t right, the two arms of the fluid paste lose heat and become sluggish, even part solidify at the boundary, before joining together. The whole idea behind doing computational modelling is to help the die designer improve his design, by allowing him to try out many different die designs and their variations on a computer, before throwing money into making an actual die. Trying out die designs on computer takes time and money too, but the expense would be relatively much much smaller as compared to actually making a die and trying it. Precision machining is too expensive, and taking a manufacturing trial takes too much time—it blocks an entire engineering team and a production machine into just trials.

So, the idea is that the computational engineer could help by telling in advance whether, given a die design and process parameters, defects like cold-joins are likely to occur.

The trouble is, the computational modelling techniques happen to be at their weakest exactly at those spots where important defects like cold-joins are most likely. These are the places where all the armies of the devil come together: non-Newtonian fluid with temperature dependent properties, moving and coalescing boundaries, transient heat transfer, phase change, variable surface tension and wall friction, pressure and rapidity (transience would be too mild a word) of the overall process.

So, that’s what the problem to model itself looks like.

Obviously, ready made software aren’t yet sophisticated enough. The best available are those that do some ad-hoc tweaking to the existing software for the plastic injection moulding. But the material and process parameters differ, and it shows in the results. And, that way, validation of these tweaks still is an on-going activity in the research community.

Obviously, more research is needed! [I told you the reason: Economics!]

Given the granular nature of the material, and the rapidity of the process, some people thought that SPH (smoothed particle hydrodynamics) should be suitable. They have tried, but I don’t know the extent of the sophistication thus far.

Some people have also tried finite-differences based approaches, with some success. But FDM has its limitations—fluxes aren’t conserved, and in a complex process like this, it would be next to impossible to tell whether a predicted result is a feature of the physical process or an artefact of the numerical modelling.

FVM should do better because it conserves fluxes better. But the existing FVM software is too complex to try out the required material and process specific variations. Try introducing just one change to a material model in OpenFOAM, and simulating the entire filling process with it. Forget it. First, try just mould filling with coupled heat transfer. Forget it. First, try just mould filling with OpenFOAM. Forget it. First, try just debug-stepping through a steady-state simulation. Forget it. First, try just compiling it from the sources, successfully.

I did!

Hence, the natural thing to do is to first write some simple FVM code, initially only in 2D, and then go on adding the process-specific complications to it.

Now this is something about I have got going, but by its nature, it also is something about you can’t blog a lot. It will be at least a few months or so before even a preliminary version 0.1 code would become available, at which point some blogging could be done about it—and, hopefully, also some bragging.

Thus, in the meanwhile, that line of thought, too comes to an end, as far as blogging is concerned.

Thus, I don’t (and won’t) have much to blog about, even if I remain (and plan to remain) busy (to very busy).

So allow me to blog only sparsely in the coming weeks and months. Guess I could bring in the comments I made at other blogs once in a while to keep this blog somehow going, but that’s about it.

In short, nothing new. And so, it all is (and is going to be) crap.

More of it, later—much later, may be a few weeks later or so. I will blog, but much more infrequently, that’s the takeaway point.

* * * * *   * * * * *   * * * * *

(Marathi) “madhu maagashee maajhyaa sakhyaa pari…”
Lyrics: B. R. Tambe
Singer: Lata Mangeshkar
Music: Vasant Prabhu

[I just finished writing the first cut; an editing pass or two is still due.]

[E&OE]

 

Micro-level water-resources engineering—2

As mentioned in my last blog post, I have been browsing material on the title subject.

In this post, let me note down a few informative links that I have (only) browsed (but not completely read through) thus far. I will come back to my own notes and observations (based on them) in the subsequent posts. BTW, I intend to keep this post as a catch-all thing: whenever I find a new interesting link, I will come back and note it here, without separately mentioning update dates and all. (I think I will also consider converting this post into a separate page of this blog or my personal Web site.)

* * * * *   * * * * *   * * * * *
Portals:

India Water Portal [^] (Web sites like these are, IMO, better than novels in English 🙂 )
Rainwater Harvesting [^]

Government and Public Sector Portals/Sites:

IMD: [^]

IITM: [^]

Central Groundwater Board:  [^]. This is a big site/portal. So, let me note down the links to some specifically relevant parts of it:  Downloads [^], Watershed [^], Aquifer Systems of India (and a few states) [^], Groundwater Yearbooks [^], Groundwater Scenario in India [^].

The World Bank funded projects in India, phase I and II: [^][^]

Books, Academics, and Professional Organizations:

A popularization kind of a book on Rajasthan’s water culture: [^]. Incidentally, it is through this book that I came to place Rajendra Singh’s work in a better context. The last time I had wondered why Singh didn’t go 400 km West. This book clarified the matter to me.

US Dept of Agriculture Report: Technical Guide to Managing Ground Water Resources [(.PDF) ^]

Groundwater Manual [^]

A book at the US GS site: [^]

A research group at CTARA, IIT Bombay: [^]. Reports and Course Materials at [^],  [^],  and [^]

A research group at IISc Bangalore: [^]. An example of a project they are carrying out: [^]

A private research cum consulting group from Pune (with many academic projects conducted with the Geology Dept. of S. P. University of Pune, too): [^]

CP Kumar’s links on hydrology [^] and on hydrology resources [^]. He works at the National Institute of Hydrology: [^]. There is a learning package for hydrology for the beginners, too: [^]

Indian Association of Hydrologists [^]

Software:

Hydrology Software:

Lists of software maintained at the USGS site, in general [^], and for groundwater in particular [^].

A proprietory software developed for use by the government agencies in India [^]:

Open-source GIS software:

Wiki list [^].

The following two seem to be more general purpose and/or leading; they also are multi-platform: QGIS (I think IIT Bombay people use it) [^], and GRASS [^].

An open-source GIS software on Windows (.NET) platform: [^]. US EPA uses it: [^]. I installed and tried it, but the documentation seems to be lagging behind the software.

ParFlow: [^]

List at the GIS Lounge: [^]

Rainfall and Its Measurement:

Annual rainfall animation [^]. Check out the animated GIF [^]. A surprise: check out the low rainfall area which the animation shows for the Konkan region. That is because while creating the animation, they coarse-grained the data. There are unexpectedly low-rainfall region even in Konkan, but these are rather isolated. Once again highlights the importance of the local data. But, it’s entertaining anyway.

Another royal entertainment (reduce your computer’s volume before hitting the link): [^]. Then, to see the actual action, hit the “Play the whole sequence” button. (This is one of the rare times that you would wish you had an Intel 386.)

Just in case you want to keep a record of the rainfall in your area, in India, we follow these specs  [(.PDF) ^].

In case you didn’t know, 1 mm of rainfall at a point means “A 0.001 m3, or 1 litre of water to each square metre of the field” [^]. … 1 cm of rainfall is ten times that number.

Exercise:

On the Internet, look up the area of a state, district, taluka, or city; look up its average annual rainfall; then find the total quantity of water (in litres) it receives via rainfall in a typical year.

Then, also do searches and find out data about its total water demand. Also, find out its current water availability, and the short-fall in the supply.

Trivia:

The average annual rainfall for India is about 70 cm in monsoon alone, and about 110 cm for the entire year (including the non-monsoon rains, snow-fall, etc.) (Source: [^]. Also see: [^]).

Floods and droughts still visit India every year.

The average annual rainfall in Jaisalmer is just 16.4 cm (less than one-fifth of that at Delhi), and all of it is received over only 10 days. (Yes, statistically speaking, as many as 355 days in a year go completely dry there.) The water-table depth there is really bad; it ranges between about 40 to 80 m (i.e., about 125 to 250 feet) [^].

Jaisalmer nevertheless has a huge lake that would supply water to the city [^] all through the year—the lake would not go dry even in summer! This lake: Image [^], video [^].

No, that lake doesn’t get its water supply from a river or groundwater sources; there is in fact no mountainous or hilly region around it. The only source of water for this lake is: an ingenious scheme for rainwater harvesting. A scheme that is almost 7 centuries old.

Now, go, figure how wasteful—and flood-hit—and water-scarce—the rest of us manage to remain even today.

* * * * *   * * * * *   * * * * *

A Song I Like:
(Marathi) “ye re ghanaa ye re ghanaa…”
Music: Hridaynath Mangeshkar
Lyrics: Aarati Prabhu
Singer: Asha Bhosale

 

[E&OE]