Why is the research on the foundations of QM necessary?

Why is the research on the foundations of QM necessary? … This post is meant to hold together some useful links touching on various aspects of this question.


Sabine Hossenfelder:

See her blog post: “Good Problems in the Foundations of Physics” [^]. Go through the entirety of the first half of the post, and then make sure to check out the paragraph of the title “The Measurement Problem” from her list.

Not to be missed: Do check out the comment on this post by Peter Shor, here [^], and Hossenfelder’s reply to it, here [^]. … If you are familiar with the outline of my approach [^], then it would be very easy to see why I must have instantaneously found her answer to be so absolutely wonderful! … Being a reply to a comment, she must have written her reply much on the fly. Even then, she not only correctly points out the fact that the measurement process must be nonlinear in nature, she also mentions that you have to give a “bottom-up” model of the Instrument. …Wow! Simply, wow!!


Lee Smolin:

Here is one of the most lucid and essence-capturing accounts concerning this topic that I have ever run into [^]. Smolin wrote it in response to the Edge Question, 2013 edition. It wonderfully captures the very essence of the confusions which were created and / or faced by all the mainstream physicists of the past—the confusions which none of them could get rid of, with the list including even such Nobel-laureates as Bohr, Einstein, Heisenberg, Pauli, de Broglie, Schrodinger, Dirac, and others. [Yes, in case you read the names too rapidly: this list does include Einstein too!]


Sean Carroll:

He explains at his blog how a lack of good answers on the foundational issues in QM leads to “the most embarrassing graph in modern physics” [^]. This post was further discussed in several other posts in the blogosphere. The survey paper which prompted Carroll’s post can be found at arXiv, here [^]. Check out the concept maps given in the paper, too. Phillip Ball’s coverage in the Nature News of this same paper can be found here [^].


…What Else?:

What else but the Wiki!… See here [^], and then, also here [^].


OK. This all should make for an adequate response, at least for the time being, to those physicists (or physics professors) who tend to think that the foundational issues does not make for “real” physics, that it is a non-issue. … However, for obvious reasons, this post will also remain permanently under updates…

 

Advertisements

Further on QM, and on changing tracks over to Data Science

OK. As decided, I took a short trip to IIT Bombay, and saw a couple of professors of physics, for very brief face-to-face interactions on the 28th evening.

No chalk-work at the blackboard had to be done, because both of them were very busy—but also quick, really very quick, in getting to the meat of the matter.


As to the first professor I saw, I knew beforehand that he wouldn’t be very enthusiastic with any alternatives to anything in the mainstream QM.

He was already engrossed in a discussion with someone (who looked like a PhD student) when I knocked at the door of his cabin. The prof immediately mentioned that he has to finish (what looked like a few tons of) pending work items, before going away on a month-long trip just after a couple of days! But, hey, as I said (in my last post), directly barging into a professor’s cabin has always done wonders for me! So, despite his having some heavy^{heavy} schedule, he still motioned me to sit down for a quick and short interaction.

The three of us (the prof, his student, and me) then immediately had a very highly compressed discussion for some 15-odd minutes. As expected, the discussion turned out to be not only very rapid, and also quite uneven, because there were so many abrupt changes to the sub-topics and sub-issues, as they were being brought up and dispatched in quick succession. …

It was not an ideal time to introduce my new approach, and so, I didn’t. I did mention, however, that I was trying to develop some such a thing. The professor was of the opinion that if you come up with a way to do faster simulations, it would always be welcome, but if you are going to argue against the well-established laws, then… [he just shook head].

I told him that I was clear, very clear on one point. Suppose, I said, that I have a complex-valued field that is defined only over the physical 3D, and suppose further that my new approach (which involves such a 3D field) does work out. Then, suppose further that I get essentially the same results as the mainstream QM does.

In such a case, I said, I am going to say that here is a possibility of looking at it as a real physical mechanism underlying the QM theory.

And if people even then say that because it is in some way different from the established laws, therefore it is not to be taken seriously, then I am very clear that I am going to say: “You go your way and I will go mine.”

But of course, I further added, that I still don’t know yet how the calculations are done in the mainstream QM for the interacting electrons—that is, without invoking simplifying approximations (such as the fixed nucleus). I wanted to see how these calculations are done using the computational modeling approach (not the perturbation theory).

It was at this point that the professor really got the sense of what I was trying to get at. He then remarked that variational formulations are capable enough, and proceeded to outline some of their features. To my query as to what kind of an ansatz they use, and what kind of parameters are involved in inducing the variations, he mentioned Chebyshev polynomials and a few other things. The student mentioned the Slater determinants. Then the professor remarked that the particulars of the ansatz and the particulars of the variational techniques were not so crucial because all these techniques ultimately boil down to just diagonalizing a matrix. Somehow, I instinctively got the idea that he hasn’t been very much into numerical simulations himself, which turned out to be the case. In fact he immediately said so himself: “I don’t do wavefunctions. [Someone else from the same department] does it.” I decided to see this other professor the next day, because it was already evening (almost approaching 6 PM or so).

A few wonderful clarifications later, it was time for me to leave, and so I thanked the professor profusely for accommodating me. The poor fellow didn’t even have the time to notice my gratitude; he had already switched back to his interrupted discussion with the student.

But yes, the meeting was fruitful to me because the prof did get the “nerve” of the issue right, and in fact also gave me two very helpful papers to study, both of them being review articles. After coming home, I have now realized that while one of them is quite relevant to me, the other one is absolutely god-damn relevant!


Anyway, after coming out of the department on that evening, I was thinking of calling my friend to let him know that the purpose of the visit to the campus was over, and thus I was totally free. While thinking about calling him and walking through the parking lot, I just abruptly noticed a face that suddenly flashed something recognizable to me. It was this same second professor who “does wavefunctions!”

I had planned on seeing him the next day, but here he was, right in front me, walking towards his car in a leisurely mood. Translated, it meant: he was very much free of all his students, and so was available for a chat with me! Right now!! Of course, I had never had made any acquaintance with him in the past. I had only browsed through his home page once in the recent times, and so could immediately make out the face, that’s all. He was just about to open the door of his car when I approached him and introduced myself. There followed another intense bout of discussions, for another 10-odd minutes.

This second prof has done numerical simulations himself, and so, he was even faster in getting a sense of what kind of ideas I was toying with. Once again, I told him that I was trying for some new ideas but didn’t get any deeper into my approach, because I myself still don’t know whether my approach will produce the same results as the mainstream QM does or not. In any case, knowing the mainstream method of handling these things was crucial, I said.

I told him how, despite my extensive Internet searches, I had not found suitable material for doing calculations. He then said that he will give me the details about a book. I should study this book first, and if there are still some difficulties or some discussions to be had, then he would be available, but the discussion would then have to progress in reference to what is already given in that book. Neat idea, this one was, perfect by me. And turns out that the book he suggested was neat—absolutely perfectly relevant to my needs, background as well as preparation.


And with that ends this small story of this short visit to IIT Bombay. I went there with a purpose, and returned with one 50 page-long and very tightly written review paper, a second paper of some 20+ tightly written pages, and a reference to an entire PG-level book (about 500 pages). All of this material absolutely unknown to me despite my searches, and as it seems as of today, all of it being of utmost relevance to me, my new ideas.


But I have to get into Data Science first. Else I cannot survive. (I have been borrowing money to fend off the credit card minimum due amounts every month.)

So, I have decided to take a rest for today, and from tomorrow onwards, or may be a day later—i.e., starting from the “shubh muhurat” (auspicious time) of the April Fool’s day, I will begin my full-time pursuit of Data Science, with all that new material on QM only to be studied on a part-time basis. For today, however, I am just going to be doing a bit of a time-pass here and there. That’s how this post got written.

Take care, and wish you the same kind of luck as I had in spotting that second prof just like that in the parking lot. … If my approach works, then I know who to contact first with my results, for informal comments on them. … I wish you this same kind of a luck…

Work hard, and bye for now.


A song I like
(Marathi) “dhunda_ madhumati raat re, naath re…”
Music: Master Krishnarao
Singer: Lata Mangeshkar
Lyrics: G. D. Madgulkar

[A Marathi classic. Credits are listed in a purely random order. A version that seems official (released by Rajshri Marathi) is here: [^] . However, somehow, the first stanza is not complete in it.

As to the set shown in this (and all such) movies, right up to, say the movie “Bajirao-Mastani,” I have—and always had—an issue. The open wide spaces for the palaces they show in the movies are completely unrealistic, given the technology of those days (and the actual remains of the palaces that are easy to be recalled by anyone). The ancients (whether here in India or at any other place) simply didn’t have the kind of technology which is needed in order to build such hugely wide internal (covered) spaces. Neitehr the so-called “Roman arch” (invented millenia earlier in India, I gather), nor the use of the monolithic stones for girders could possibly be enough to generate such huge spans. Idiots. If they can’t get even simple calculations right, that’s only to be expected—from them. But if they can’t even recall the visual details of the spans actually seen for the old palaces, that is simply inexcusable. Absolutely thorough morons, these movie-makers must be.]

 

Wrapping up my research on QM—without having to give up on it

Guess I am more or less ready to wrap up my research on QM. Here is the exact status as of today.


1. The status today:

I have convinced myself that my approach (viz. the idea of singular potentials anchored into electronic positions, and with a 3D wave-field) is entirely correct, as far as QM of non-interacting particles is concerned. That is to say, as far as the abstract case of two particles in a 0-potential 1D box, or a less abstract but still hypothetical case of two non-interacting electrons in the helium atom, and similar cases are concerned. (A side note: I have worked exclusively with the spinless electrons. I don’t plan to include spin right away in my development—not even in my first paper on it. Other physicists are welcome to include it, if they wish to, any time they like.)

As to the actual case of two interacting particles (i.e., the interaction term in the Hamiltonian for the helium atom), I think that my approach should come to reproduce the same results as those obtained using the perturbation theory or the variational approach. However, I need to verify this part via discussions with physicists.

All in all, I do think that the task which I had intended to complete (and to cross-check) before this month-end, is already over—and I find that I don’t have to give up on QM (as suspected earlier [^]), because I don’t have to abandon my new approach in the first place.


2. A clarification on what had to be worked out and what had to be left alone:

To me, the crucial part at this stage (i.e., for the second-half of March) was verifying whether working with the two ideas of (i) a 3D wavefield, and (ii) electrons as “particles” having definite positions (or more correctly, as points of singularities in the potential field), still leads to the same mathematical description as in the mainstream (linear) quantum mechanics or not.

I now find that my new approach leads to the same maths—at least for the QM of the non-interacting particles. And further, I also have very definite grounds to believe that my new approach should also work out for two interacting particles (as in the He atom).

The crucial part at this stage (i.e., for the second half of March) didn’t have so much to do with the specific non-linearity which I have proposed earlier, or the details of the measurement process which it implies. Working out the details of these ideas would have been impossible—certainly beyond the capacities of any single physicist, and over such a short period. An entire team of PhD physicists would be needed to tackle the issues arising in pursuing this new approach, and to conduct the simulations to verify it.

BTW, in this context, I do have some definite ideas regarding how to hasten this process of unraveling the many particular aspects of the measurement process. I would share them once physicists show readiness to pursue this new approach. [Just in case I forget about it in future, let me note just a single cue-word for myself: “DFT”.]


3. Regarding revising the Outline document issued earlier:

Of course, the Outline document (which was earlier uploaded at iMechanica, on 11th February 2019) [^] needs to be revised extensively. A good deal of corrections and modifications are in order, and so are quite a few additions to be made too—especially in the sections on ontology and entanglement.

However, I will edit this document at my leisure later; I will not allocate a continuous stretch of time exclusively for this task any more.

In fact, a good idea here would be to abandon that Outline document as is, and to issue a fresh document that deals with only the linear aspects of the theory—with just a sketchy conceptual idea of how the measurement process is supposed to progress in a broad background context. Such a document then could be converted as a good contribution to a good journal like Nature, Science, or PRL.


4. The initial skepticism of the physicists:

Coming to the skepticism shown by the couple of physicists (with whom I had had some discussions by emails), I think that, regardless of their objections (hollers, really speaking!), my main thesis still does hold. It’s they who don’t understand the quantum theory—and let me hasten to add that by the words “quantum theory,” here I emphatically mean the mainstream quantum theory.

It is the mainstream QM which they themselves don’t understood as well as they should. What my new approach then does is to merely uncover some of these weaknesses, that’s all. … Their weakness pertains to a lack of understanding of the 3D \Leftrightarrow 3ND correspondence in general, for any kind of physics: classical or quantum. … Why, I even doubt whether they understand even just the classical vibrations themselves right or not—coupled vibrations under variable potentials, that is—to the extent and depth to which they should.

In short, it is now easy for me to leave their skepticism alone, because I can now clearly see where they failed to get the physics right.


5. Next action-item:

In the near future, I would like to make short trips to some Institutes nearby (viz., in no particular order, one or more of the following: IIT Bombay, IISER Pune, IUCAA Pune, and TIFR Mumbai). I would like to have some face-to-face discussions with physicists on this one single topic: the interaction term in the Hamiltonian for the helium atom. The discussions will be held strictly in the context that is common to us, i.e., in reference to the higher-dimensional Hilbert space of the mainstream QM.

In case no one from these Institutes responds to my requests, I plan to go and see the heads of these Institutes (i.e. Deans and Directors)—in person, if necessary. I might also undertake other action items. However, I also sincerely hope and think that such things would not at all be necessary. There is a reason why I think so. Professors may or may not respond to an outsider’s emails, but they do entertain you if you just show up in their cabin—and if you yourself are smart, courteous, direct, and well… also experienced enough. And if you are capable of holding discussions on the “common” grounds alone, viz. in terms of the linear, mainstream QM as formulated in the higher-dimensional spaces (I gather it’s John von Neumann’s formulation), that is to say, the “Copenhagen interpretation.” (After doing all my studies—and, crucially, after the development of what to me is a satisfactory new approach—I now find that I no longer am as against the Copenhagen interpretation as some of the physicists seem to be.) … All in all, I do hope and think that seeing Diro’s and all won’t be necessary.

I also equally sincerely hope that my approach comes out unscathed during / after these discussions. … Though the discussions externally would be held in terms of mainstream QM, I would also be simultaneously running a second movie of my approach, in my mind alone, cross-checking whether it holds or not. (No, they wouldn’t even suspect that I was doing precisely that.)

I will be able to undertake editing of the Outline document (or leaving it as is and issuing a fresh document) only after these discussions.


6. The bottom-line:

The bottom-line is that my main conceptual development regarding QM is more or less over now, though further developments, discussions, simulations, paper-writing and all can always go on forever—there is never an end to it.


7. Data Science!

So, I now declare that I am free to turn my main focus to the other thing that interests me, viz., Data Science.

I already have a few projects in mind, and would like to initiate work on them right away. One of the “projects” I would like to undertake in the near future is: writing very brief notes, written mainly for myself, regarding the mathematical techniques used in data science. Another one is regarding applying ML techniques to NDT (nondestructive testing). Stay tuned.


A song I like:

(Western, instrumental) “Lara’s theme” (Doctor Zhivago)
Composer: Maurice Jarre

 

 

 

 

 

I need a [very well paying] job in data science. Now.

I need a very well paying job in data science. Now. In Pune, India.


 



Yes, I was visiting Kota for some official work when at the railway station of the [back then, a simple little] town, on a “whim” (borne out of a sense of curiosity, having heard the author’s name), I bought it. That was on 14th July 1987. The stamp of the A. H. Wheeler and Company (Rupa Publications), so well known to us all (including IITians and IIM graduates) back then, stand in a mute testimony for the same—the price, and the fact that this little book was imported by them. As to bearing testimony to the event, so does my signature, and the noting of the date. (I would ordinarily have no motivation to note a fake date, what do you say?) Also notable is the price of the book: Rs. 59/-. Bought out of Rs. 1800/- per month, if I remember those days right (and plain because I was an M. Tech. from (one of the then five) IITs. My juniors from my own UG college, COEP, would have had to start with a Rs. 1200/- or Rs. 1400/- package, and rise to my level in about 3 years, back then.)

Try to convince my the then back self that I would be jobless today.

No, really. Do that.

And see if I don’t call you names. Right here.

Americans!


A song I like:

(English, pop-song): “Another town, another train…”
Band (i.e. music, composition, lyrics, etc., to the best of my knowledge): ABBA

Bye for now.


And develop a habit to read—and understand—books. That’s important. As my example serves to illustrate the point. Whether I go jobful or jobless. It’s a good habit to cultivate.

But then, Americans have grown so insensitive to the authentic pains of others—including real works by others. The said attitude must reflect inwards too. The emphasis is on the word “authentic.” If a man doesn’t care for another honest, really very hard-working man in pain but spends his intellect and time in finding rationalizations to enhance his own prestige and money-obtaining powers, by the law of integrative mechanism of conscisousness that is the law of “karma,” the same thing must haunt him back—whether he be a Republican, or a Democrat. (Just a familiarity with the word “karma” is not enough to escape its bad—or good—effects. What matters are actions (“karma”s), ultimately. But given the fact that man has intellect, these are helped, not obscured, by it.)

Go, convince Americans to give me a good, well-paying job, in data science, and in Pune—the one that matches my one-sentence profile (mentioned here) and my temperament. As to the latter, simple it is, to put it in one sentence: “When the time calls for it, I am known to call a spade a spade.”

And, I can call Americans (and JPBTIs) exactly what they have earned.

But the more important paragraph was the second in this section. Starting from “But then, Americans have grown so insensitive to the authentic… .”

Instead of “pains,” you could even add a value / virtue. The statement would hold.

 

 

An intermediate update regarding my intermediate development regarding my new approach regarding QM

Update on 2019.10.02, 17:00 IST

I have completed writing (more like somehow filling in the contents for) the alpha version of the outline document. However, it is not at all readable. So, I am not in a position to be able to distribute it even as a private communication. (Talking besides the black-board is so much easier to do!)

By now, the outline document alone runs into 18 pages (some of the contents being repetitive). The background document has become another 12 pages. Editing 30 pages should take at least about a week or so, if not a little more.

So, no promises, but chances are good that both these documents could get finalized and distributed within the next 7 to 10 days.

In the meanwhile, feel free to look for the other things on this blog, and bye for now.

Update over; original post, below the fold.



0. As mentioned here earlier, I have been in the process of writing a point-by-point outline document on my new approach to quantum mechanics.


1. A certain preliminary version of the outline document was completed on the afternoon of 4th February 2019. It is about 10 pages long, and roughly at a pre-alpha stage. Separately, there also has been an additional document covering some of the background material for understanding QM. (An earlier version of this background document was posted here at this blog few days ago—too bad if you never noticed it—bad, for you, that is.) It too has been under expansion and revision; currently it stands at a total of further 10 pages (i.e in addition to the outline document).


2. As things usually go at such a stage (i.e., in the stages before the alpha), certain mistakes (including some basic conceptual errors too) were noticed even in the main document, but only after it was “carefully” completed. Currently, these are being addressed.


3. In case you are wondering about the nature of the inadvertent errors or lacunae:

Contrary to what many people might be expecting from me:

3.1: First, errors or lacunae were mainly found not regarding my new ideas concerning the measurement postulate, but rather with the more philosophical ideas concerning the quantum-physical ontology!

3.2: Second, perhaps then not very surprisingly, lacunae were also found on the more applied side of the QM postulates, especially regarding the many- particles systems and quantum entanglement.

The nature of the lacunae / errors somehow gives me a confidence that the basic ideas of my new approach themselves should be right!


4. Pre-release versions starting from the (upcoming) alpha version could perhaps be made available to select physicists, as a private communication. …

… Of course, it is a different matter altogether that I think that none would be interested in the same. (Indian and American physicists and others think that way, anyway!)

… But still, if interested, drop me a line, and I will consider having you on the distribution list (which is expected not to carry more than 8–10 people at the most, so as to keep my own email communications and the attendant diversions and confusions down to the minimum so that I myself the jobless could at all handle it).


5. The Release Candidate should get posted at iMechanica, but only for the purposes of securing an external “time-stamp”—not so much for the purposes of discussions. (The focus of iMechanica is obviously different; it’s much more on the classical engineering side—which fact I love.)


6. I will try to finish the alpha by this week-end.

The next milestones until the final release (or even the release candidates) will be decided once the alpha is actually at the hand.


7. I will announce the availability of the alpha at this blog via a separate post.


A song I like:

(Hindi) “teraa meraa pyaar amar, phir bhee mujh ko lagataa hai Dar…”
Singer: Lata Mangeshkar
Music: Shankar-Jaikishan
Lyrics: Shailendra

[No specific order is being implied by the order of the credits. … In other words, I can’t decide on it. Not for this song.]


History:

First written on my private machine: Wednesday 06 February 2019 08:35:32 AM IST
First finalized here: Wednesday 06 February 2019 11:31:05 PM IST

 

 

A general update

Hmmm… Slightly more than 3 weeks since I posted anything here. A couple of things happened in the meanwhile.


1. Wrapping up of writing QM scripts:

First, I wrapped up my simulations of QM. I had reached a stage (just in my mind, neither on paper nor on laptop) whereby the next thing to implement would have been: the simplest simulations using my new approach. … Ummm… I am jumping ahead of myself.

OK, to go back a bit. The way things happened, I had just about begun pursuing Data Science when this QM thingie (conference) suddenly came up. So, I had to abandon Data Science as is, and turn my attention full-time to QM. I wrote the abstract, sent it to the conference, and started jotting down some of the early points for the eventual paper. Frequent consultations with text-books was a part of it, and so was searching for any relevant research papers. Then, I also began doing simulations of the simplest textbook cases, just to see if I can find any simpler route from the standard / mainstream QM to my re-telling of the facts covered by it.

Then, as things turned out, my abstract for the conference paper got rejected. However, now that I had gotten a tempo for writing and running the simulations, I decided to complete at least those standard UG textbook cases before wrapping up this entire activity, and going back to Data Science. My last post was written when I was in the middle of this activity.

While thus pursuing the standard cases of textbook QM (see my last post), I also browsed a lot, thought a lot, and eventually found that simulations involving my approach shouldn’t take as long as a year, not even several months (as I had mentioned in my last post). What happened here was that during the aforementioned activity, I ended up figuring out a far simpler way that should still illustrate certain key ideas from my new approach.

So, the situation, say in the first week of December, was the following: (i) Because the proposed paper had been rejected, there was no urgency for me to continue working on the QM front. (ii) I had anyway found a simpler way to simulate my new approach, and the revised estimates were that even while working part-time, I should be able to finish the whole thing (the simulations and the paper) over just a few months’ period, say next year. (iii) At the same time, studies of Data Science had anyway been kept on the back-burner.

That’s how (and why) I came to wrap up all my activity on the QM front, first thing.

I then took a little break. I then turned back to Data Science.


2. Back to Data Science:

As far as learning Data Science goes, I knew from my past experience that books bearing titles such as: “Learn Artificial Intelligence in 3 Days,” or “Mastering Machine Learning in 24 Hours,” if available, would have been very deeply satisfying, even gratifying.

However, to my dismay, I found that no such titles exist. … Or, may be, such books are there, but someone at Google is deliberately suppressing the links to them. Whatever be the case, forget becoming a Guru in 24 hours (or even in 3 days), I found that no one was promising me that I could master even just one ML library (say TensorFlow, or at least scikit-learn) over even a longer period, say about week’s time or so.

Sure there were certain other books—you know, books which had blurbs and reader-reviews which were remarkably similar to what goes with those mastering-within-24-hours sort of books. However, these books had less appealing titles. I browsed through a few of these, and found that there simply was no way out; I would have to begin with Michael Nielsen’s book [^].

Which I did.

Come to think of it, the first time I had begun with Nielsen’s book was way back, in 2016. At that time, I had not gone beyond the first couple of sections of the first chapter or so. I certainly had not come to even going through the first code snippet that Nielsen gives, let alone running it, or trying any variations on it.

This time around, though, I decided to stick it out with this book. I had to. … What was the end result?

Well, unlike me, I didn’t take any jumps while going through this particular book. I began reading it in the given sequence, and then found that I could even continue with the same (i.e., reading in sequence)! I also made some furious underlines, margin-notes, end-notes, and all that. (That’s right. I was not reading this book online; I had first taken a printout.) I also sketched a few data structures in the margins, notably for the code around the “w” matrices. (I tend to suspect every one else’s data structures except for mine!) I pursued this activity covering about everything in the book, except for the last chapter. It was at this point that finally my patience broke down. I went back to my usual self and began jumping back and forth over the topics.

As a result, I can’t say that I have finished the book. But yes, I think I’ve got a fairly idea of what’s there in it.

So there.


3. What books to read after Nielsen’s?

Of course, Nielsen’s book wasn’t the only thing that I pursued over the past couple of weeks. I also very rapidly browsed through some other books, checked out the tutorial sites on libraries like scikit-learn, TensorFlow, etc. I came to figure out two things:

As the first thing, I found that I was unnecessarily getting tense when I saw young people casually toss around some fearsome words like “recurrent learning,” “convolutional networks,” “sentiments analysis,” etc., all with such ease and confidence. Not just on the ‘net but also in real life. … I came to see them do that when I attended a function for the final-rounds presentations at Intel’s national-level competition (which was held in IISER Pune, a couple of months ago or so). Since I had seen those quoted words (like “recurrent learning”) only while browsing through text-books or Wiki articles, I had actually come to feel a bit nervous at that event. Ditto, when I went through the Quora answers. Young people everywhere in the world seemed to have put in a lot of hard-work in studying Data Science. “When am I going to catch up with them, if ever?” I had thought.

It was only now, after going through the documentation and tutorials for these code libraries (like scikit-learn) that I came to realize that the most likely scenario here was that most of these kids were simply talking after trying out a few ready-made tutorials or so. … Why, one of the prize-winning (or at least, short-listed) presentations at that Intel competition was about the particles-swam optimization, and during their talk, the students had even shown a neat visualization of how this algorithm works when there are many local minima. I had got impressed a lot by that presentation. … Now I gathered that it was just a ready-made animated GIF lifted from KDNuggets or some other, similar, site… (Well, as it turns out, it must have been from the Wiki! [^])

As the second thing, I realized that for those topics which Nielsen doesn’t cover, good introductory books are hard to find. (That was a bit of an understatement. My real feel here is that, we are lucky that Nielsen’s book is at all available in the first place!)

…If you have any tips on a good book after Nielsen’s then please drop me an email or a comment; thanks in advance.


4. A tentative plan:

Anyway, as of now, a good plan seems to be: (i) first, to complete the first pass through Nielsen’t book (which should take just about a couple of days or so), and then, to begin pursuing all of the following, more or less completely simultaneously: (ii) locating and going through the best introductory books / tutorials on other topics in ML (like PCA, k-means, etc); (iii) running tutorials of ML libraries (like scikit-learn and TensorFlow); (iv) typing out LaTeX notes for Nielsen’s book (which would be useful eventually for such things as hyper-parameter tuning), and running modified (i.e., simplified) versions of his code (which means, the second pass through his book); and finally (v) begin cultivating some pet project from Data Science for moonlighting over a long period of time (just the way I have maintained a long-running interest in the micro-level water-resources engineering).

As to the topic for the pet project, here are the contenders as of today. I have not finalized anything just as yet (and am likely not to do so for quite some time), but the following seem to be attractive: (a) Predicting rainfall in India (though getting granular enough data is going to be a challenge), (b) Predicting earth-quakes (locations and/or intensities), (c) Identifying the Indian classical “raaga” of popular songs, etc. … I also have some other ideas but these are more in the nature of professional interests (especially, for application in engineering industries). … Once again, if you feel there is some neat idea that could be adopted for the pet project, then sure point it out to me. …


…Anyway, that’s about it! Time to sign off. Will come back next year—or if some code / notes get written before that, then even earlier, but no definite promises.

So, until then, happy Christmas, and happy new year!…


A song I like:

(Marathi) “mee maaze mohita…”
Lyrics: Sant Dnyaaneshwar
Music and Singer: Kishori Amonkar


[One editing pass is still due; should be effected within a day or two. Done on 2018.12.18 13:41 hrs IST.]

Would it happen to me, too? …Also, other interesting stories / links

1. Would it happen to me, too?

“My Grandfather Thought He Solved a Cosmic Mystery,”

reports Veronique Greenwood for The Atlantic [^] [h/t the CalTech physicist Sean Carroll’s twitter feed]. The story has the subtitle:

“His career as an eminent physicist was derailed by an obsession. Was he a genius or a crackpot?”

If you visit the URL for this story, the actual HTML page which loads into your browser has another title, similar to the one above:

“Science Is Full of Mavericks Like My Grandfather. But Was His Physics Theory Right?”

Hmmm…. I immediately got interested. After all, I do work also on foundations of quantum mechanics. … “Will it happpen to me, too?” I thought.

At this point, you should really go through Greenwood’s article, and continue reading here only after you have finished reading it.


Any one who has worked on any conceptually new approach would find something in Greenwood’s article that resonates with him.

As to me, well, right at the time that attempts were being made to find examiners for my PhD, my guide (and even I) had heard a lot of people say very similar things as Greenwood now reports: “I don’t understand what you are saying, so please excuse me.” This, when I thought that my argument should be accessible even to an undergraduate in engineering!

And now that I continue working on the foundations of QM, having developed a further, completely new (and more comprehensive) approach, naturally, Greenwood’s article got me thinking: “Would it happen to me, too? Once again? What if it does?”


…Naah, it wouldn’t happen to me—that was my conclusion. Not even if I continue talking about, you know, QM!


But why wouldn’t something similar happen to me? Especially given the fact that a good part of it has already happened to me in the past?

The reason, in essence, is simple.

I am not just a physicist—not primarily, anyway. I am primarily an engineer, a computational modeller. That’s why, things are going to work out in a different way for me.

As to my past experience: Well, I still earned my PhD degree. And with it, the most critical part of the battle is already behind me. There is a lot of resistance to your acceptance before you have a PhD. Things do become a lot easier once you have gone successfully past it. That’s another reason why things are going to work out in a different way now. … Let me explain in detail.


I mean to say, suppose that I have a brand-new approach for resolving all the essential quantum mechanical riddles. [I think I actually do!]

Suppose that I try to arrange for a seminar to be delivered by me to a few physics professors and students, say at an IIT, IISER, or so. [I actually did!]

Suppose that they don’t respond very favorably or very enthusiastically. Suppose they are outright skeptical when I say that in principle, it is possible to think of a classical mechanically functioning analog simulator which essentially exhibits all the essential quantum mechanical features. Suppose that they get stuck right at that point—may be because they honestly and sincerely believe that no classical system can ever simulate the very quantum-ness of QM. And so, short of calling me a crack-pot or so, they just directly (almost sternly) issue the warning that there are a lot of arguments against a classical system reproducing the quantum features. [That’s what has actually happened; that’s what one of the physics professors I contacted wrote back to me.]

Suppose, then, that I send an abstract to an international conference or so. [This too has actually happend, too, recently.]

Suppose that, in the near future, the conference organizers too decline my submission. [In actual reality, I still don’t know anything about the status of my submission. It was in my routine searches that I came across this conference, and noticed that I did have about 4–5 hours’ time to meet the abstracts submissions deadline. I managed to submit my abstract within time. But since then, the conference Web site has not got updated. There is no indication from the organizers as to when the acceptance or rejection of the submitted abstracts would be communicated to the authors. An enquiry email I wrote to the organizers has gone unanswered for more than a week by now. Thus, the matter is still open. But, just for the sake of the argument, suppose that they end up rejecting my abstract. Suppose that’s what actually happens.]

So what?

Since I am not a physicist “proper”, it wouldn’t affect me the way it might have, if I were to be one.

… And, that way, I could even say that I am far too smart to let something like that (I mean some deep disappointment or something like that) happen to me! … No, seriously! Let me show you how.

Suppose that the abstract I sent to an upcoming conference was written in theoretical/conceptual terms. [In actual reality, it was.]

Suppose now that it therefore gets rejected.

So what?

I would simply build a computational model based on my ideas. … Here, remember, I have already begun “talking things” about it [^]. No one has come up with a strong objection so far. (May be because they know the sort of a guy I am.)

So, if my proposed abstract gets rejected, what I would do is to simply go ahead and perform a computer simulation of a classical system of this sort (one which, in turn, simulates the QM phenomena). I might even publish a paper or two about it—putting the whole thing in purely classical terms, so that I manage to get it published. (Before doing that, I might even discuss the technical issues involved on blogs, possibly even at iMechanica!)

After such a paper (ostensibly only on the classical mechanics) gets accepted and published, I will simply write a blog post, either here or at iMechanica, noting how that system actually simulates the so-and-so quantum mechanical feature. … Then, I would perform another simulation—say using DFT. (And it is mainly for DFT that I would need help from iMechanicians or so.) After it too gets accepted and published, I will write yet another blog post, explaining how it does show some quantum mechanical-ness. … Who knows such a sequence could continue…

But such a series (of the simulations) wouldn’t be very long, either! The thing is this.

If your idea does indeed simplify certain matters, then you don’t have to argue a lot about it—people can see its truth real fast. Especially if it has to do with “hard” sciences like engineering—even physics!

If your basic idea itself isn’t so good, then, putting it in the engineering terms makes it more likely that even if you fail to get the weakness of your theory, someone else would. All in all, well and good for you.

As to the other possibility, namely, if your idea is good, but, despite putting it in the simpler terms (say in engineering or simulation terms), people still fail to see it, then, well, so long as your job (or money-making potential) itself is not endangered, then I think that it is a good policy to leave the mankind to its own follies. It is not your job to save the world, said Ayn Rand. Here, I believe her. (In fact, I believed in this insight even before I had ever run into Ayn Rand.)


As to the philosophic issues such as those involved in the foundations of QM—well, these are best tackled philosophically, not physics-wise. I wouldn’t use a physics-based argument to take a philosophic argument forward. Neither would I use a philosophical argument to take a physics-argument forward. The concerns and the methods of each are distinctly different, I have come to learn over a period of years.

Yes, you can use a physics situation as being illustrative of a philosophic point. But an illustration is not an argument; it is merely a device to make understanding easier. Similarly, you could try to invoke a philosophic point (say an epistemological point) to win a physics-based argument. But your effort would be futile. Philosophic ideas are so abstract that they can often be made to fit several different, competing, physics-related arguments. I would try to avoid both these errors.

But yes, as a matter of fact, certain issues that can only be described as philosophic ones, do happen to get involved when it comes to the area of the foundations of QM.

Now, here, given the nature of philosophy, and of its typical practitioners today (including those physicists who do dabble in philosophy), even if I become satisfied that I have resolved all the essential QM riddles, I still wouldn’t expect these philosophers to accept my ideas—not immediately anyway. In fact, as I anticipate things, philosophers, taken as a group, would never come to accept my position, I think. Such an happenstance is not necessarily to be ascribed to the personal failings of the individual philosophers (even if a lot of them actually do happen to be world-class stupid). That’s just how philosophy (as a discipline of studies) itself is like. A philosophy is a comprehensive view of existence—whether realistic or otherwise. That’s why it’s futile to expect that all of the philosophers would come to agree with you!

But yes, I would expect them to get the essence of my argument. And, many of them would, actually, get my argument, its logic—this part, I am quite sure of. But just the fact that they do understand my argument would not necessarily lead them to accept my positions, especially the idea that all the QM riddles are thereby resolved. That’s what I think.


Similarly, there also are a lot of mathematicians who dabble in the area of foundations of QM. What I said for philosophers also applies more or less equally well to them. They too would get my ideas immediately. But they too wouldn’t, therefore, come to accept my positions. Not immediately anyway. And in all probability, never ever in my lifetime or theirs.


So, there. Since I don’t expect an overwhelming acceptance of my ideas in the first place, there isn’t going to be any great disappointment either. The very expectations do differ.

Further, I must say this: I would never ever be able to rely on a purely abstract argument. That would feel like too dicey or flimsy to me. I would have to offer my arguments in terms of physically existing things, even if of a brand new kind. And, machines built out of them. At least, some working simulations. I would have to have these. I would not be able to rest on an abstract argument alone. To be satisfactory to me, I would have to actually build a machine—a soft machine—that works. And, doing just this part itself is going to be far more than enough to keep me happy. They don’t have to accept the conceptual arguments or the theory that goes with the design of such (soft) machines. It is enough that I play with my toys. And that’s another reason why I am not likely to derive a very deep sense of disenchantment or disappointment.


But if you ask me, the way I really, really like think about it is this:

If they decline my submission to the conference, I will write a paper about it, and send it, may be, to Sean Carroll or Sabine Hosenfelder or so. … The way I imagine things, he is then going to immediately translate my paper into German, add his own name to ensure its timely publication, and … . OK, you get the idea.

[In the interests of making this post completely idiot-proof, let me add: Here, in this sub-section, I was just kidding.]


2. The problem with the Many Worlds:

“Why the Many Worlds interpretation has many problems.”

Philip Ball argues in an article for the Quanta Mag [^] to the effect that many worlds means no world at all.

No, this is not exactly what he says. But what he says is clear enough that it is this conclusion which becomes inescapable.

As to what he actually says: Well, here is a passage, for instance:

“My own view is that the problems with the MWI are overwhelming—not because they show it must be wrong, but because they render it incoherent. It simply cannot be articulated meaningfully.”

In other words, Ball’s actual position is on the epistemic side, not on the ontic. However, his arguments are clear enough (and they often enough touch on issues that are fundamental enough) that the ontological implications of what he actually says, also become inescapable. OK, sometimes, the article unnecessarily takes detours into non-essentials, even into something like polemics. Still, overall, the write up is very good. Recommended very strongly.

Homework for you: If the Many Worlds idea is that bad, then explain why it might be that many otherwise reasonable people (for instance, Sean Carroll) do find the Many Worlds approach attractive. [No cheating. Think on your own and write. But if cheating is what you must do, then check out my past comment at some blog—I no longer remember where I wrote it, but probably it was on Roger Schlafly’s blog. My comment had tackled precisely this latter issue, in essential terms. Hints for your search: My comment had spoken about data structures like call-stacks and trees, and their unfolding.]


3. QM as an embarrassment to science:

“Why quantum mechanics is an “embarrassment” to science”

Brad Plumer in his brief note at the Washington Post [^] provides a link to a video by Sean Carroll.

Carroll is an effective communicator.

[Yes, he is the same one who I imagine is going to translate my article into German and… [Once again, to make this post idiot-proof: I was just kidding.]]


4. Growing younger…

I happened to take up a re-reading of David Ruelle’s book: “Chance and Chaos”. The last time I read it was in the early 1990s.

I felt younger! … May be if something strikes me while I am going through it after a gap of decades, I will come back and note it here.


5. Good introductory resources on nonlinear dynamics, catastrophe theory, and chaos theory:

If you are interested in the area of nonlinear dynamics, catastrophe theory and chaos theory, here are a few great resources:

  • For a long time, the best introduction to the topic was a brief write-up by Prof. Harrison of UToronto; it still remains one of the best [^].
  • Prof. Zeeman’s 1976 article for SciAm on the catastrophe theory is a classic. Prof. Zhigang Suo (of Harvard) has written a blog post of title “Recipe for catastrophe”at iMechanica [^], in which he helpfully provides a copy of Zeeman’s article. I have strongly recommended Zeeman’s write-up before, and I strongly recommend it once again. Go through it even if only to learn how to write for the layman and still not lose precision or quality.
  • As to a more recent introductory expositions, do see Prof. Geoff Boeing’s blog post: “Chaos theory and the logistic map” [^]. Boeing is a professor of urban planning, and not of engineering, physics, CS, or maths. But it is he who gives the clearest idea about the distinction between randomness and chaos that I have ever run into. (However, I only later gathered that he does have a UG in CS, and a PG in Information Management.) Easy to understand. Well ordered. Overall, very highly recommended.

Apart from it all:

Happy Diwali!


A song I like:

(Hindi) “tere humsafar geet hai tere…”
Music: R. D. Burman
Singers: Kishore Kumar, Mukesh, Asha Bhosale
Lyrics: Majrooh Sultanpuri

[Has this song been lifted from some Western song? At least inspired from one?

Here are the reasons for this suspicion: (1) It has a Western-sounding tune. It doesn’t sound Indian. There is no obvious basis either in the “raag-daari,” or in the Indian folk music. (ii) There are (beautiful) changes in the chords here. But there is no concept of chords in the traditional Indian music—basically, there is no concept of harmony in it, only of melody. (iii) Presence of “yoddling” (if that’s the right word for it). That too, by a female singer. That too, in the early 1970’s! Despite all¬† the “taan”s and “firat”s and all that, this sort of a thing (let’s call it yoddling) has never been a part of the traditional Indian music.

Chances are good that some of the notes were (perhaps very subconsciously) inspired from a Western tune. For instance, I can faintly hear “jingle bells” in the refrain. … But the question is: is there a more direct correspondence to a Western tune, or not.

And, if it was not lifted or inspired from a Western song, then it’s nothing but a work of an absolute genius. RD anyway was one—whether this particular song was inspired from some other song, or not.

But yes, I liked this song a great deal as a school-boy. It happened to strike me once again only recently (within the last couple of weeks or so). I found that I still love it just as much, if not more.]


[As usual, may be I will come back tomorrow or so, and edit/streamline this post a bit. One update done on 2018.11.04 08:26 IST. A second update done on 2018.11.04 21:01 IST. I will now leave this post in whatever shape it is in. Got to move on to trying out a few things in Python and all. Will keep you informed, probably after Diwali. In the meanwhile, take care and bye for now…]

Back on the ‘net!

Hushshshsh… Finally I am back on the ‘net (I mean to say, in a real way—not via smartphone). But it’s not after having the broken laptop repaired. On the contrary, it seems as if it’s no longer viable to revive my broken laptop.

So, right now, I am writing this post using an even older laptop that I had. I dug it up from the cupboard, and revived it.

Actually, you can’t call it a laptop; even the manufacturer called it a notebook (the 2008 model Compaq Presario C700, 32-bit Intel Core Duo @ 1.83 GHz, 1 GB RAM). I used to use about a decade ago. All my PhD time programs and data were sitting on it. (The thesis had been written and submitted even earlier, even before I bought this notebook; it was written on a desktop I had back then. However, after submitting thesis, it took them 2 years to arrange for the defence. That’s how, it was on this machine that I had prepared my final defence slides.)

It was a dual boot machine, with one partition running XP, and the other, Vista. I had forgotten the password of the Vista, but fortunately, not of the XP.

The trouble with XP was that both the Mozilla and Internet Explorer installed on it had already become absolutely obsolete. Also Java. (The support for these software had vanished by 2014, I now gathered.) The browsers were so old that they couldn’t handle even simplest of today’s https requests—the SSL layer itself must have been too old. So, I couldn’t have used that OS even for just surfing on the ‘net.

So, what I did over the past couple of days was to first take a backup of my PhD-time data. Then, I proceeded to reformat the whole hard disk, and installed Lubuntu 18.04.1 on it.

Yes, Lubuntu does manage to run even on a 32-bit 1 GB machine. However, even with this comparatively light-weight OS, there is enormous disk-thrashing, particularly if I try to use a programming IDE. (After bootup, the OS by itself eats up something like 600–700 MB of RAM.) So far, I’ve tried installing and using PyCharm, Spyder and VSCode. They all do run, but very, very slowly. Sometimes, you have to even wait for a minute or so just for a context-switch between two processes (say, the browser and the IDE).

So, looks like despite all my valiant tries, this machine isn’t going to be useful for my ANN studies; it would be usable only for browsing. … May be I should borrow money and buy a new laptop….

But one way or the other, this decade-old machine still is better, much much better, than my new (late-2017 times) smart-phone. … As I said recently, the smart-phone is a bad idea. …

… Anyway, now that I am on the ‘net (can use a real keyboard), I should be back pretty soon, say tomorrow or the day after, with something which is much more exciting. That’s a promise. So, bye for now, but stay tuned.


A song I like:
(Marathi) “ekaach yaa janmi jaNu…”
Music: Sudhir Phadke
Lyrics: Sudhir Moghe
Singer: Asha Bhosale

[Usually, when you say “song,” what you usually mean is the basic tune. OK, sometimes, first the words and then the tune. However, this song is odd.

The real beauty of this song lies not in any one of its elements but in the way it unfolds—the way the music composer leads you through an interplay between various musical phrases and the lyrical ones. Especially noteworthy are the violin pieces which transition you from the stanza to the refrain and back. Also noteworthy is the interplay between the Western and the Indian instruments…

So, what rules here is not just the tune, not just the words, not just the orchestration, and not just the rendering in the voice by the singer. Instead, it is the skillfully arranged interplay between all these elements which truly gives the defining character to this song and makes it so beautiful.

So, it’s the music composer who really stands out here, even if the entire team is outstanding… Or so I believe. … Anyway, bye for now. ]

[May be a little streamlining, later on.]

The quantum mechanical features of my laptop…

My laptop has developed certain quantum mechanical features after its recent repairs [^]. In particular, if I press the “power on” button, it does not always get “measured” into the “power-on” state.

That’s right. In starting the machine, it is not possible to predict when the power-on button may work, when it may lead to an actual boot-up. Sometimes it does, sometimes it doesn’t.

For instance, the last time I shut it down was on the last night, just before dinner. Then, after dinner, when I tried to restart it, the quantum mechanical features kicked in and the associated randomness was such that it simply refused the request. Ditto, this morning. Ditto, early afternoon today. But now (at around 18:00 hrs on 09 October), it somehow got up and going!


Fortunately, I have taken backup of crucial data (though not all). So, I can afford to look at it with a sense of humour.

But still, if I don’t come back for a somewhat longer period of time than is usual (about 8–10 days), then know that, in all probability, I was just waiting helplessly in getting this thing repaired, once again. (I plan to take it to the repairsman tomorrow morning.) …

…The real bad part isn’t this forced break in browsing or blogging. The real bad part is: my inability to continue with my ANN studies. It’s not possible to maintain any tempo in studies in this now-on-now-off sort of a manner—i.e., when the latter is not chosen by you.

Yes, I do like browsing, but once I get into the mood of studying a new topic (and, BTW, just reading through pop-sci articles does not count as studies) and especially if the studies also involve programming, then having these forced breaks is really bad. …

Anyway, bye for now, and take care.


PS: I added that note on browsing and then it struck me. Check out a few resources while I am gone and following up with the laptop repairs (and no links because right while writing this postscript, the machine crashed, and so I am somehow completing it using smartphone—I hate this stuff, I mean typing using at most two fingers, modtly just one):

  1. As to Frauchiger and Renner’s controversial much-discussed result, Chris Lee’s account at ArsTechnica is the simplest to follow. Go through it before any other sources/commentaries, whether to the version published recently in Nature Comm. or the earlier ones, since 2016.
  2. Carver Mead’s interview in the American Spectator makes for an interesting read even after almost two decades.
  3. Vinod Khosla’s prediction in 2017 that AI will make radiologists obsolete in 5 years’ time. One year is down already. And that way, the first time he made remarks to that sort of an effect were some 6+ years ago, in 2012!
  4. As to AI’s actual status today, see the Quanta Magazine article: “Machine learning confronts the elephant in the room” by Kevin Hartnett. Both funny and illuminating (esp. if you have some idea about how ML works).
  5. And, finally, a pretty interesting coverage of something about which I didn’t have any idea beforehand whatsoever: “New AI strategy mimics how brains learn to smell” by Jordana Cepelwicz in Quanta Mag.

Ok. Bye, really, for now. See you after the laptop begins working.


A Song I Like:
Indian, instrumental: Theme song of “Malgudi Days”
Music: L. Vaidyanathan

 

 

Suspension of blogging

Earlier, within a day of my posting the last blog entry here, i.e. right by 26th September morning, my laptop developed a problem, which led to a series of problems, which meant that, for a while, I could not at all blog or even surf on the ‘net effectively.

The smartphone screen is too small for me to do any serious browsing very effectively, let alone doing any blogging / writing / coding.


Never did buy into that idiotic Steve Jobs’ ridiculous claims anyway; bought my smartphone only because it’s good for things like storing phone numbers and listening to songs—and, yes, also for browsing a bit on google maps, and for taking snaps once in a while. But that’s about it. Nothing more than that. In particular, no social media, no banking, no e-payments, no emails, no real browsing. And, as to that prized (actually wretched) thin-ness and/or the delicate-ness of this goddamn thing. It is annoying. Just hold the damn thing in your palm, and it seems as if it itself auto-punches a few buttons and proceeds to close all the windows you had kept active. Or, worse: it launches a new window all by itself, forcing you to take a hike into an ad-link or sundry news item.

A good 1 inch thick and sturdy instrument with goodly big buttons would have been a better design choice, far better—not those bloody thin slivers on the sides which pass for buttons.


Anyway, the troubles with the laptop were these:

(i) In 2014, the screen panel of the laptop had cracked near a corner a bit, and then, subsequently, over a period of years or so, the front and the back covering parts of the screen panel had come to split apart, though only just slightly, only partially. I had shown the problem to the authorized dealer. He had advised me to do nothing about it. (If the problem were to be worse, he would have advised me to replace the screen, he had said. This was about 2 years ago.)

(ii) Then, slowly, friction began developing in only one of the hinges of the screen panel, the hinge near the same (cracked) corner. Finally, came this day when this partial splitting suddenly led to the panel-studs breaking apart (with a clean, brittle fracture). How did it happen? Because—I figured out only after the fact—the friction in the hinges together with the partial split up meant that an interior part of the screen panel was getting excessively bent, near the broken panel corner. This excessive bending was putting enormous bending moment on the studs holding the two parts of the partially split up panel near the hinges. (The overall frame of the screen panel was effectively acting as a large lever arm serving to bend the small plastic studs.)

(iii) In getting the above-mentioned problem fixed (by 29th September), some short-circuiting also occurred, with the result that now the graphics chip conked up. (No, the authorized dealer didn’t accept the machine. He advised replacement of both the mother-board and the screen. So, I did a google search and went through two private repairs-men, one of them being much better than the other. He fixed it right.)

Fixing the graphics problem took time because a replacement chip was not readily available in the local market, and there was a national holiday in between (on 2nd October) which kept the concerned courier services closed on that day.

(iv) Then, after replacing the graphics chip, once the screen finally started working, now it was the turn of the USB ports to begin malfunctioning. I got the delivery of my laptop last evening, and noticed it only after coming home.

This is a problem which has not yet been fixed. Getting it fixed is important because only 1 out of the 3 USB ports is currently functioning, and if it too is gone, backups will become impossible. I am not willing to lose my data once again.


The problem with the machine meant that my studies (and programming) of ANNs too got interrupted.

They still remain interrupted.

I guess the remaining problem (regarding the malfunctioning USB ports) is relatively a minor issue.

What I mean to say is that I could have resumed my regular sort of blogging.

However, last night, at around 00:40 hrs IST on 05 October 2018 there was a psychic attack on me which woke me up from sleep. (Also note the update in my last post). In view of this attack, I have finally decided to say it clear and loud, (perhaps once again):

“To hell with you, LA!”


If you wonder why I was so confident about “LA,” check out the visits pattern for the earlier part of the day yesterday, and juxtapose them with the usual patterns of visits here, overall.

In case you don’t know, all local newspapers of all California towns have been full of advertisements for psychic “consultants” providing their “services” for a fee—which would be almost nothing when measured in US dollars.


I have had enough of these bitches and bastards. That’s why, I am temporarily suspending my blog. When the psychic attacks come to a definitive stop, I will resume my own blogging, as also my commenting on other blogs, and posting any research notes etc.


And, yes, one more point: No, don’t believe what Ayn Rand Institute tells you. Psychic attacks are for real (though they are much, much rarer, and they indeed are effected in far more controlled ways, than what folklore or your average street-side vendor of the “services” says.)


No songs section this time round, for obvious reasons.


PS: BTW, no, I still haven’t seen my approach to QM mentioned in any of the papers / books, or in any discussions of any papers anywhere (including some widely followed blogs / twitter feeds), as yet. Apparently, my judgment that my approach is indeed new, continues to hold.