The One vs. the Many

This post continues from my last post. In that post, I had presented a series of diagrams depicting the states of the universe over time, and I had then asked you a simple question pertaining to the physics of it: what the series depicted, physically speaking.

I had also given an answer to that question, the one which most people would give. It would run something like this:

There are two blocks/objects/entities which are initially moving closer towards each other. Following their motions, they come closer to each other, touch each other, and then reverse the directions of their motions. Thus, there is a collision of sorts. (We deliberately didn’t go into the maths of it, e.g., such narrower, detailed or higher-level aspects such as whether the motions were uniform or whether they had accelerations/decelerations (implying forces) or not, etc.)

I had then told you that the preceding was not the only answer possible. At least one more answer that captures the physics of it, also is certainly possible. This other answer in fact leads to an entirely different kind of mathematics! I had asked you to think about such alternative(s).

In this post, let me present the alternative description.


The alternative answer is what school/early college-level text-books never present to students. Neither do the pop-sci. books. However, the alternative approach has been documented, in some or the other form, at least for centuries if not for millenia. The topic is routinely taught in the advanced UG and PG courses in physics. However, the university courses always focus on the maths of it, not the physics. The physical ideas are never explicitly discussed in them. The text-books, too, dive straight into the relevant mathematics. The refusal of physicists (and of mathematicians) to dwell on the physical bases of this alternative description is in part responsible for the endless confusion and debates surrounding such issues as quantum entanglement, action at a distance, etc.

There also is another interesting side to it. Some aspects of this kind of a thinking are also evident in the philosophical/spiritual/religious/theological thinking. I am sure that you would immediately notice the resonance to such broader ideas as we subsequently discuss the alternative approach. However, let me stress that, in this post, we focus only on the physics-related issues. Thus, if I at times just say “universe,” it is to be understood that the word pertains only to the physical universe (i.e. the sum total of the inanimate objects, and also the inanimate aspects of living beings), not to any broader, spiritual or philosophical issue.

OK. Now, on to the alternative description itself. It runs something like this:

There is only one physical object which physically exists, and it is the physical universe. The grey blocks that you see in the series of diagrams are not independent objects, really speaking. In this particular depiction, what look like two independent “objects” are, really speaking, only two spatially isolated parts of what actually is one and only one object. In fact, the “empty” or the “white” space you see in between the objects is not, really speaking, empty at all—it does not represent the literal void or the nought, so to speak. The region of space corresponding to the “empty” portions is actually occupied by a physical something. In fact, since there is only one physical object to all exist, it is that same—singleton—physical object which is present also in the apparently empty portions.

This is not to deny that the distinction between the grey and the white/“empty” parts is not real. The physically existing distinction between them—the supposed qualitative differences among them—arises only because of some quantitative differences in some property/properties of the universe-object. In other words, the universe does not exist uniformly across all its parts. There are non-uniformities within it, some quantitative differences existing over different parts of itself. Notice, up to this point, we are talking of parts and variations within the universe. Both these words: “parts” and “within” are to be taken in the broadest possible sense, as in  the sense of“logical parts” and “logically within”.

However, one set of physical attributes that the universe carries pertains to the spatial characteristics such as extension and location. A suitable concept of space can therefore be abstracted from these physically existing characteristics. With the concept of space at hand, the physical universe can then be put into an abstract correspondence with a suitable choice of a space.

Thus, what this approach naturally suggests is the idea that we could use a mathematical field-function—i.e. a function of the coordinates of a chosen space—in order to describe the quantitative variations in the properties of the physical universe. For instance, assuming a 1D universe, it could be a function that looks something like what the following diagram shows.

Here, the function shows that a certain property (like mass density) exists with a zero measure in the regions of the supposedly empty space, whereas it exists with a finite measure, say with density of \rho_{g} in the grey regions. Notice that if the formalism of a field-function (or a function of a space) is followed, then the property that captures the variations is necessarily a density. Just the way the mass density is the density of mass, similarly, you can have a density of any suitable quantity that is spread over space.

Now, simply because the density function (shown in blue) goes to zero in certain regions, we cannot therefore claim that nothing exists in those regions. The reason is: we can always construct another function that has some non-zero values everywhere, and yet it shows sufficiently sharp differences between different regions.

For instance, we could say that the graph has \rho_{0} \neq 0 value in the “empty” region, whereas it has a \rho_{g} value in the interior of the grey regions.

Notice that in the above paragraph, we have subtly introduced two new ideas: (i) some non-zero value, say \rho_{0}, as being assigned even to the “empty” region—thereby assigning a “something”, a matter of positive existence, to the “empty”-ness; and (ii) the interface between the grey and the white regions is now asserted to be only “sufficiently” sharp—which means, the function does not take a totally sharp jump from \rho_{0} to \rho_{g} at a single point x_i which identifies the location of the interface. Notice that if the function were to have such a totally sharp jump at a single point, it would not in fact even be a proper function, because there would be an infinity of density values between and including \rho_{0} and \rho_{g} existing at the same point x_i. Since the density would not have a unique value at x_i, it won’t be a function.

However, we can always replace the infinitely sharp interface of zero thickness by a sufficiently sharp (and not infinitely sharp) interface of a sufficiently small but finite thickness.

Essentially, what this trick does is to introduce three types of spatial regions, instead of two: (i) the region of the “empty” space, (ii) the region of the interface (iii) the interior, grey, region.

Of course, what we want are only two regions, not three. After all, we need to make a distinction only between the grey and the white regions. Not an issue. We can always club the interface region with either of the remaining two. Here is the mathematical procedure to do it.

Introduce yet another quantitative measure, viz., \rho_{c}, called the critical density. Using it, we can in fact divide the interface dispense region into further two parts: one which has \rho  < \rho_c and another one which has \rho \geq \rho_c. This procedure does give us a point-thick locus for the distinction between the grey and the white regions, and yet, the actual changes in the density always remain fully smooth (i.e. density can remain an infinitely differentiable function).

All in all, the property-variation at the interface looks like this:

Indeed, our previous solution of clubbing the interface region into the grey region is nothing but having \rho_c = \rho_0, whereas clubbing the interface in the “empty” space region is tantamount to having \rho_c = \rho_g.

In any case, we do have a sharp demarcation of regions, and yet, the density remains a continuous function.

We can now claim that such is what the physical reality is actually like; that the depiction presented in the original series of diagrams, consisting of infinitely sharp interfaces, cannot be taken as the reference standard because that depiction itself was just that: a mere depiction, which means: an idealized description. The actual reality never was like that. Our ultimate standard ought to be reality itself. There is no reason why reality should not actually be like what our latter description shows.

This argument does hold. Mankind has never been able to think of a single solid argument against having the latter kind of a description.

Even Euclid had no argument for the infinitely sharp interfaces his geometry implies. Euclid accepted the point, the line and the plane as the already given entities, as axioms. He did not bother himself with locating their meaning in some more fundamental geometrical or mathematical objects or methods.

What can be granted to Euclid can be granted to us. He had some axioms. We don’t believe them. So we will have our own axioms. As part of our axioms, interfaces are only finitely sharp.

Notice that the perceptual evidence remains the same. The difference between the two descriptions pertains to the question of what is it that we regard as object(s), primarily. The considerations of the sharpness or the thickness of the interface is only a detail, in the overall scheme.

In the first description, the grey regions are treated as objects in their own right. And there are many such objects.

In the second description, the grey regions are treated not as objects in their own right, but merely as distinguishable (and therefore different) parts of a single object that is the universe. Thus, there is only one object.

So, we now have two alternative descriptions. Which one is correct? And what precisely should we regard as an object anyway? … That, indeed, is a big question! 🙂

More on that question, and the consequences of the answers, in the next post in this series…. In it, I will touch upon the implications of the two descriptions for such things as (a) causality, (b) the issue of the aether—whether it exists and if yes, what its meaning is, (c) and the issue of the local vs. non-local descriptions (and implications therefore, in turn, for such issues as quantum entanglement), etc. Stay tuned.


A Song I Like:

(Hindi) “kitni akeli kitni tanha see lagi…”
Singer: Lata Mangeshkar
Music: Sachin Dev Burman
Lyrics: Majrooh Sultanpuri

[May be one editing pass, later? May be. …]

Introducing a Very Foundational Issue of Physics (and of Maths)

OK, so I am finally done with moving my stuff, and so, from now on, should be able to find at least some time for ‘net activities, including browsing and blogging (not to mention also picking up writing my position paper on QM from where I left it).

Alright, so let me resume my blogging right away by touching on a very foundational aspect of physics (and also of maths).


Before you can even think of building a theory of physics, you must first adopt, implicitly or explicitly, a viewpoint concerning what kind of physical objects are assumed to exist in the physical universe.

For instance, Newtonian mechanics assumes that the physical universe is made from massive and charge-less solid bodies that experience and exert the inter-body forces of gravity and those arising out of their direct contact. In contrast, the later development of the Maxwellian electrodynamics assumes that there are two types of objects: massive and charged solid bodies, and the electromagnetic and gravitational fields which they set-up and with which they interact. Last year, I had written a post spelling out the different kinds of physical objects that are assumed to exist in the Newtonian mechanics, in the classical electrodynamics, etc.; see here [^].

In this post, I want to highlight yet another consideration which enters physics at the most fundamental level. Let me illustrate the issue involved via a simple example.

Consider a 2D universe. The following series of diagrams depicts this universe as it exists at different instants of time, from t_{1} through t_{9}. Each diagram in the series represents the entire universe.

Assume that the changes in time actually occur continuously; it’s just that while drawing diagrams, we can depict the universe only at isolated (or “discrete”) instants of time.

Now, consider this seemingly very simple question:

What precisely does the above series of diagrams depict, physically speaking?

Can you provide a brief description (say, running into 2–3 lines) as to what is happening here, physics-wise?

At this point, you may perhaps be thinking that the answer is obvious. The answer is so obvious, you could be thinking, that it is very stupid of me to even think of raising such a question.

“Why, of course, what that series of pictures depicts is this: there are two blocks/objects/entities which are initially moving towards each other. Eventually they come so close to each other that they even touch each other. They thus undergo a collision, and as a result, they begin to move apart. … Plain and simple.”

You could be thinking along some lines like that.

But let me warn you, that precisely is your potential pitfall—i.e., thinking that the question is so simple, and the answer so obvious. Actually, as it turns out, there is no unique answer to that question.

That’s why, no matter how dumb the above question may look to you, let me ask you once again to take a moment to think afresh about it. And then, whatever be your answer, write it down. In your answer, try to be as brief and as precise as possible.

I will continue with this issue in my next post, to be written and posted after a few days. I am deliberately taking a break here because I do want you to give it a shot—writing down a precise answer. Unless you actually try out this exercise for yourself, you won’t come to appreciate either of the following two, separate points:

  1. how difficult it can be to write very precise answers to what appear to be the simplest of questions, and
  2. how unwittingly and subtly some unwarranted assumptions can so easily creep in, in a physical description—and therefore, in mathematics.

You won’t come to appreciate how deceptive this question really is unless you actually give it a try. And it is to ensure this part that I have to take a break here.

Enjoy!

See, how hard I am trying to become an Approved (Full) Professor of Mechanical Engineering in SPPU?—2

Remember the age-old decade-old question, viz.:

“Stress or strain: which one is more fundamental?”

I myself had posed it at iMechanica about a decade ago [^]. Specifically, on 8th March 2007 (US time, may be EST or something).

The question had generated quite a bit of discussion at that time. Even as of today, this thread remains within the top 5 most-hit posts at iMechanica.

In fact, as of today, with about 1.62 lakh reads (i.e. 162 k hits), I think, it is the second most hit post at iMechanica. The only post with more hits, I think, is Nanshu Lu’s, providing a tutorial for the Abaqus software [^]; it beats mine like hell, with about 5 lakh (500 k) hits! The third most hit post, I think, again is about sharing scripts for the Abaqus software [^]; as of today, it lags mine very closely, but could overtake mine anytime, with about 1.48 lakh (148 k) hits already. There used to be a general thread on Open Source FEM software that used to be very close to my post. As of today, it has fallen behind a bit, with about 1.42 lakh (142 k) hits [^]. (I don’t know, but there could be other widely read posts, too.)

Of course, the attribute “most hit” is in no fundamental way related to “most valuable,” “most relevant,” or even “most interesting.”

Yet, the fact of the matter also is that mine is the only one among the top 5 posts which probes on a fundamental theoretical aspect. All others seem to be on software. Not very surprising, in a way.

Typically, hits get registered for topics providing some kind of a practical service. For instance, tips and tutorials on software—how to install a software, how to deal with a bug, how to write a sub-routine, how to produce visualizations, etc. Topics like these tend to get more hits. These are all practical matters, important right in the day-to-day job or studies, and people search the ‘net more for such practically useful services. Precisely for this reason—and especially given the fact that iMechanica is a forum for engineers and applied scientists—it is unexpected (at least it was unexpected to me) that a “basically useless” and “theoretical” discussion could still end up being so popular. There certainly was a surprise about it, to me. … But that’s just one part.

The second, more interesting part (i.e., more interesting to me) has been that, despite all these reads, and despite the simplicity of the concepts involved (stress and strain), the issue went unresolved for such a long time—almost a decade!

Students begin to get taught these two concepts right when they are in their XI/XII standard. In my XI/XII standard, I remember, we even had a practical about it: there was a steel wire suspended from a cantilever near the ceiling, and there was hook with a supporting plate at the bottom of this wire. The experiment consisted of adding weights, and measuring extensions. … Thus, the learning of these concepts begins right around the same time that students are learning calculus and Newton’s  3 laws… Students then complete the acquisition of these two concepts in their “full” generality, right by the time they are just in the second- or third-year of undergraduate engineering. The topic is taught in a great many branches of engineering: mechanical, civil, aerospace, metallurgical, chemical, naval architecture, and often-times (and certainly in our days and in COEP) also electrical. (This level of generality would be enough to discuss the question as posed at iMechanica.)

In short, even if the concepts are so “simple” that UG students are routinely taught them, a simple conceptual question involving them could go unresolved for such a long time.

It is this fact which was (honestly) completely unexpected to me, at least at the time when I had posed the question.

I had actually thought that there would surely be some reference text/paper somewhere that must have considered this aspect already, and answered it. But I was afraid that the answer (or the reference in which it appears) could perhaps be outside of my reach, my understanding of continuum mechanics. (In particular, I knew only a little bit of tensor calculus—only that as given in Malvern, and in Schaum’s series, basically. (I still don’t know much more about tensor calculus; my highest reach for tensor calculus remains limited to the book by Prof. Allan Bower of Brown [^].)) Thus, the reason I wrote the question in such a great detail (and in my replies, insisted on discussing the issues in conceptual details) was only to emphasize the fact that I had no hi-fi tensor calculus in mind; only the simplest physics-based and conceptual explanation was what I was looking for.

And that’s why, the fact that the question went unresolved for so long has also been (actually) fascinating to me. I (actually) had never expected it.


And yes, “dear” Officially Approved Mechanical Engineering Professors at the Savitribai Phule Pune University (SPPU), and authorities at SPPU, as (even) you might have noticed, it is a problem concerning the very core of the Mechanical Engineering proper.


I had thought once, may be last year or so, that I had finally succeeded in nailing down the issue right. (I might have written about it on this blog or somewhere else.) But, still, I was not so sure. So, I decided to wait.

I now have come to realize that my answer should be correct.


I, however, will not share my answer right away. There are two reasons for it.

First, I would like it if someone else gives it a try, too. It would be nice to see someone else crack it, too. A little bit of a wait is nothing to trade in for that. (As far as I am concerned, I’ve got enough “popularity” etc. just out of posing it.)

Second, I also wish to see if the Officially Approved Mechanical Engineering Professors at the Savitribai Phule Pune University (SPPU)) would be willing and able to give it a try.

(Let me continue to be honest. I do not expect them to crack it. But I do wish to know whether they are able to give it a try.)

In fact, come to think of it, let me do one thing. Let me share my answer only after one of the following happens:

  • either I get the Official Approval (and also a proper, paying job) as a Full Professor of Mechanical Engineering at SPPU,
  • or, an already Officially Approved Full Professor of Mechanical Engineering at SPPU (especially one of those at COEP, especially D. W. Pande, and/or one of those sitting on the Official COEP/UGC Interview Panels for faculty interviews at SPPU) gives it at least a try that is good enough. [Please note, the number of hits on the international forum of iMechanica, and the nature of the topic, once again.]

I will share my answer as soon as either of the above two happens—i.e., in the Indian government lingo: “whichever is earlier” happens.


But, yes, I am happy that I have come up with a very good argument to finally settle the issue. (I am fairly confident that my eventual answer should also be more or less satisfactory to those who had participated on this iMechanica thread. When I share my answer, I will of course make sure to note it also at iMechanica.)


This time round, there is not just one song but quite a few of them competing for inclusion on the “A Song I Like” section. Perhaps, some of these, I have run already. Though I wouldn’t mind repeating a song, I anyway want to think a bit about it before finalizing one. So, let me add the section when I return to do some minor editing later today or so. (I certainly want to get done with this post ASAP, because there are other theoretical things that beckon my attention. And yes, with this announcement about the stress-and-strain issue, I am now going to resume my blogging on topics related to QM, too.)

Update at 13:40 hrs (right on 19 Dec. 2016): Added the section on a song I like; see below.


A Song I Like:

(Marathi) “soor maagoo tulaa mee kasaa? jeevanaa too tasaa, mee asaa!”
Lyrics: Suresh Bhat
Music: Hridaynath Mangeshkar
Singer: Arun Date

It’s a very beautiful and a very brief poem.

As a song, it has got fairly OK music and singing. (The music composer could have done better, and if he were to do that, so would the singer. The song is not in a bad shape in its current form; it is just that given the enormously exceptional talents of this composer, Hridaynath Mangeshkar, one does get a feel here that he could have done better, somehow—don’t ask me how!) …

I will try to post an English translation of the lyrics if I find time. The poem is in a very, very simple Marathi, and for that reason, it would also be very, very easy to give a rough sense of it—i.e., if the translation is to be rather loose.

The trouble is, if you want to keep the exact shade of the words, it then suddenly becomes very difficult to translate. That’s why, I make no promises about translating it. Further, as far as I am concerned, there is no point unless you can convey the exact shades of the original words. …

Unless you are a gifted translator, a translation of a poem almost always ends up losing the sense of rhythm. But even if you keep a more modest aim, viz., only of offering an exact translation without bothering about the rhythm part, the task still remains difficult. And it is more difficult if the original words happen to be of the simple, day-to-day usage kind. A poem using complex words (say composite, Sanskrit-based words) would be easier to translate precisely because of its formality, precisely because of the distance it keeps from the mundane life… An ordinary poet’s poem also would be easy to translate regardless of what kind of words he uses. But when the poet in question is great, and uses simple words, it becomes a challenge, because it is difficult, if not impossible, to convey the particular sense of life he pours into that seemingly effortless composition. That’s why translation becomes difficult. And that’s why I make no promises, though a try, I would love to give it—provided I find time, that is.


Second Update on 19th Dec. 2016, 15:00 hrs (IST):

A Translation of the Lyrics:

I offer below a rough translation of the lyrics of the song noted above. However, before we get to the translation, a few notes giving the context of the words are absolutely necessary.

Notes on the Context:

Note 1:

Unlike in the Western classical music, Indian classical music is not written down. Its performance, therefore, does not have to conform to a pre-written (or a pre-established) scale of tones. Particularly in the Indian vocal performance, the singer is completely free to choose any note as the starting note of his middle octave.

Typically, before the actual singing begins, the lead singer (or the main instrument player) thinks of some tone that he thinks might best fit how he is feeling that day, how his throat has been doing lately, the particular settings at that particular time, the emotional interpretation he wishes to emphasize on that particular day, etc. He, therefore, tentatively picks up a note that might serve as the starting tone for the middle octave, for that particular performance. He makes this selection not in advance of the show and in private, but right on the stage, right in front of the audience, right after the curtain has already gone up. (He might select different octaves for two successive songs, too!)

Then, to make sure that his rendition is going to come out right if he were to actually use that key, that octave, what he does is to ask a musician companion (himself on the stage besides the singer) to play and hold that note on some previously well-tuned instrument, for a while. The singer then uses this key as the reference, and tries out a small movement or so. If everything is OK, he will select that key.

All this initial preparation is called (Hindi) “soor lagaanaa.” The part where the singer turns to the trusted companion and asks for the reference note to be played is called (Hindi) “soor maanganaa.” The literal translation of the latter is: “asking for the tone” or “seeking the pitch.”

After thus asking for the tone and trying it out, if the singer thinks that singing in that specific key is going to lead to a good concert performance, he selects it.

At this point, both—the singer and that companion musician—exchange glances at each other, and with that indicate that the tone/pitch selection is OK, that this part is done. No words are exchanged; only the glances. Indian performances depend a great deal on impromptu variations, on improvizations, and therefore, the mutual understanding between the companion and the singer is of crucial importance. In fact, so great is their understanding that they hardly ever exchange any words—just glances are enough. Asking for the reference key is just a simple ritual that assures both that the mutual understanding does exist.

And after that brief glance, begins the actual singing.

Note 2:

Whereas the Sanskrit and Marathi word “aayuShya” means life-span (the number of years, or the finite period that is life), the Sanskrit and Marathi word “jeevan” means Life—with a capital L. The meaning of “jeevan” thus is something like a slightly abstract outlook on the concrete facts of life. It is like the schema of life. The word is not so abstract as to mean the very Idea of Life or something like that. It is life in the usual, day-to-day sense, but with a certain added emphasis on the thematic part of it.

Note 3:

Here, the poet is addressing this poem to “jeevan” i.e., to the Life with a capital L (or the life taken in its more abstract, thematic sense). The poet is addressing Life as if the latter is a companion in an Indian singing concert. The Life is going to help him in selecting the note—the note which would define the whole scale in which to sing during the imminent live performance. The Life is also his companion during the improvisations. The poem is addressed using this metaphor.

Now, my (rough) translation:

The Refrain:
[Just] How do I ask you for the tone,
Life, you are that way [or you follow some other way], and I [follow] this way [or, I follow mine]

Stanza 1:
You glanced at me, I glanced at you,
[We] looked full well at each other,
Pain is my mirror [or the reference instrument], and [so it is] yours [too]

Stanza 2:
Even once, to [my] mind’s satisfaction,
You [oh, Life] did not ever become my [true]  mate
[And so,] I played [on this actual show of life, just whatever] the way the play happened [or unfolded]

And, finally, Note 4 (Yes, one is due):

There is one place where I failed in my translation, and most any one not knowing both the Marathi language and the poetry of Suresh Bhat would.

In Marathi, “tu tasaa, [tar] mee asaa,” is an expression of a firm, almost final, acknowledgement of (irritating kind of) differences. “If you must insist on being so unreasonable, then so be it—I am not going to stop following my mind either.” That is the kind of sense this brief Marathi expression carries.

And, the poet, Suresh Bhat, is peculiar: despite being a poet, despite showing exquisite sensitivity, he just never stops being manly, at the same time. Pain and sorrow and suffering might enter his poetry; he might acknowledge their presence through some very sensitively selected words. And yet, the underlying sense of life which he somehow manages to convey also is as if he is going to dismiss pain, sorrow, suffering, etc., as simply an affront—a summarily minor affront—to his royal dignity. (This kind of a “royal” sense of life often is very well conveyed by ghazals. This poem is a Marathi ghazal.) Thus, in this poem, when Suresh Bhat agrees to using pain as a reference point, the words still appear in such a sequence that it is clear that the agreement is being conceded merely in order to close a minor and irritating part of an argument, that pain etc. is not meant to be important even in this poem let alone in life. Since the refrain follows immediately after this line, it is clear that the stress gets shifted to the courteous question which is raised following the affronts made by one fickle, unfaithful, even idiotic Life—the question of “Just how do I treat you as a friend? Just how do I ask you for the tone?” (The form of “jeevan” or Life used by Bhat in this poem is masculine in nature, not neutral the way it is in normal Marathi.)

I do not know how to arrange the words in the translation so that this same sense of life still comes through. I simply don’t have that kind of a command over languages—any of the languages, whether Marathi or English. Hence this (4th) note. [OK. Now I am (really) done with this post.]


Anyway, take care, and bye for now…


Update on 21st Dec. 2016, 02:41 AM (IST):

Realized a mistake in Stanza 1, and corrected it—the exchange between yours and mine (or vice versa).


[E&OE]

Conservation of angular momentum isn’t [very] fundamental!

What are the conservation principles (in physics)?

In the first course on engineering mechanics (i.e. the mechanics of rigid bodies) we are taught that there are these three conservation principles: Conservation of: (i) energy, (ii) momentum, and (iii) angular momentum. [I am talking about engineering programs. That means, we live entirely in a Euclidean, non-relativistic, world.]

Then we learn mechanics of fluids, and the conservation of (iv) mass too gets added. That makes it four.

Then we come to computational fluid dynamics (CFD), and we begin to deal with only three equations: conservation of (i) mass, (ii) momentum, and (iii) energy. What happens to the conservation of the angular momentum? Why does the course on CFD drop it? For simplicity of analysis?

Ask that question to postgraduate engineers, even those who have done a specialization in CFD, and chances are, a significant number of them won’t be able to answer that question in a very clear manner.

Some of them may attempt this line of reasoning: That’s because in deriving the fluids equations (whether for a Newtonian fluid or a non-Newtonian one), the stress tensor is already assumed to be symmetrical: the shear stresses acting on the adjacent faces are taken to be equal and opposite (e.g. \sigma_{xy} = \sigma_{yx}). The assumed equality can come about only after assuming conservation of the angular momentum, and thus, the principle is already embedded in the momentum equations, as they are stated in CFD.

If so, ask them: How about a finite rotating body—say a gyroscope? (Assume rigidity for convenience, if you wish.) Chances are, a great majority of them will immediately agree that in this case, however, we have to apply the angular momentum principle separately.

Why is there this difference between the fluids and the finite rotating bodies? After all, both are continua, as in contrast to point-particles.

Most of them would fall silent at this point. [If not, know that you are talking with someone who knows his mechanics well!]


Actually, it so turns out that in continua, the angular momentum is an emergent/derivative property—not the most fundamental one. In continua, it’s OK to assume conservation of just the linear momentum alone. If it is satisfied, the conservation of angular momentum will get satisfied automatically. Yes, even in case of a spinning wheel.

Don’t believe me?

Let me direct you to Chad Orzel; check out here [^]. Orzel writes:

[The spinning wheel] “is a classical system, so all of its dynamics need to be contained within Newton’s Laws. Which means it ought to be possible to look at how angular momentum comes out of the ordinary linear momentum and forces of the components making up the wheel. Of course, it’s kind of hard to see how this works, but that’s what we have computers for.” [Emphasis in italics is mine.]

He proceeds to put together a simple demo in Python. Then, he also expands on it further, here [^].


Cool. If you think you have understood Orzel’s argument well, answer this [admittedly deceptive] question: How about point particles? Do we need a separate conservation principle for the angular momentum, in addition to that for the linear momentum at least in their case? How about the earth and the moon system, granted that both can be idealized as point particles (the way Newton did)?

Think about it.


A Song I Like:

(Hindi) “baandhee re kaahe preet, piyaa ke sang”
Singer: Sulakshana Pandit
Music: Kalyanji-Anandji
Lyrics: M. G. Hashmat

 

[E&OE]