Why is the research on the foundations of QM necessary?

Why is the research on the foundations of QM necessary? … This post is meant to hold together some useful links touching on various aspects of this question.


Sabine Hossenfelder:

See her blog post: “Good Problems in the Foundations of Physics” [^]. Go through the entirety of the first half of the post, and then make sure to check out the paragraph of the title “The Measurement Problem” from her list.

Not to be missed: Do check out the comment on this post by Peter Shor, here [^], and Hossenfelder’s reply to it, here [^]. … If you are familiar with the outline of my approach [^], then it would be very easy to see why I must have instantaneously found her answer to be so absolutely wonderful! … Being a reply to a comment, she must have written her reply much on the fly. Even then, she not only correctly points out the fact that the measurement process must be nonlinear in nature, she also mentions that you have to give a “bottom-up” model of the Instrument. …Wow! Simply, wow!!


Lee Smolin:

Here is one of the most lucid and essence-capturing accounts concerning this topic that I have ever run into [^]. Smolin wrote it in response to the Edge Question, 2013 edition. It wonderfully captures the very essence of the confusions which were created and / or faced by all the mainstream physicists of the past—the confusions which none of them could get rid of, with the list including even such Nobel-laureates as Bohr, Einstein, Heisenberg, Pauli, de Broglie, Schrodinger, Dirac, and others. [Yes, in case you read the names too rapidly: this list does include Einstein too!]


Sean Carroll:

He explains at his blog how a lack of good answers on the foundational issues in QM leads to “the most embarrassing graph in modern physics” [^]. This post was further discussed in several other posts in the blogosphere. The survey paper which prompted Carroll’s post can be found at arXiv, here [^]. Check out the concept maps given in the paper, too. Phillip Ball’s coverage in the Nature News of this same paper can be found here [^].


…What Else?:

What else but the Wiki!… See here [^], and then, also here [^].


OK. This all should make for an adequate response, at least for the time being, to those physicists (or physics professors) who tend to think that the foundational issues does not make for “real” physics, that it is a non-issue. … However, for obvious reasons, this post will also remain permanently under updates…

 

Advertisements

The self-field, and the objectivity of the classical electrostatic potentials: my analysis

This blog post continues from my last post, and has become overdue by now. I had promised to give my answers to the questions raised last time. Without attempting to explain too much, let me jot down the answers.


1. The rule of omitting the self-field:

This rule arises in electrostatic interactions basically because the Coulombic field has a spherical symmetry. The same rule would also work out in any field that has a spherical symmetry—not just the inverse-separation fields, and not necessarily only the singular potentials, though Coulombic potentials do show both these latter properties too.

It is helpful here to think in terms of not potentials but of forces.

Draw any arbitrary curve. Then, hold one end of the curve fixed at the origin, and sweep the curve through all possible angles around it, to get a 3D field. This 3D field has a spherical symmetry, too. Hence, gradients at the same radial distance on opposite sides of the origin are always equal and opposite.

Now you know that the negative gradient of potential gives you a force. Since for any spherical potential the gradients are equal and opposite, they cancel out. So, the forces cancel out to.

Realize here that in calculating the force exerted by a potential field on a point-particle (say an electron), the force cannot be calculated in reference to just one point. The very definition of the gradient refers to two different points in space, even if they be only infinitesimally separated apart. So, the proper procedure is to start with a small sphere centered around the given electron, calculate the gradients of the potential field at all points on the surface of this sphere, calculate the sum of the forces exerted on the domain contained inside the spherical surface by these forces, and then take the sphere to the limiting of vanishing size. The sum of the forces thus exerted is the net force acting on that point-particle.

In case of the Coulombic potentials, the forces thus calculated on the surface of any sphere (centered on that particle) turn out to be zero. This fact holds true for spheres of all radii. It is true that gradients (and forces) progressively increase as the size of the sphere decreases—in fact they increase without all bounds for singular potentials. However, the aforementioned cancellation holds true at any stage in the limiting process. Hence, it holds true for the entirety of the self-field.

In calculating motions of a given electron, what matters is not whether its self-field exists or not, but whether it exerts a net force on the same electron or not. The self-field does exist (at least in the sense explained later below) and in that sense, yes, it does keep exerting forces at all times, also on the same electron. However, due to the spherical symmetry, the net force that the field exerts on the same electron turns out to be zero.

In short:

Even if you were to include the self-field in the calculations, if the field is spherically symmetric, then the final net force experienced by the same electron would still have no part coming from its own self-field. Hence, to economize calculations without sacrificing exactitude in any way, we discard it out of considerations.The rule of omitting the self-field is just a matter of economizing calculations; it is not a fundamental law characterizing what field may be objectively said to exist. If the potential field due to other charges exists, then, in the same sense, the self-field too exists. It’s just that for the motions of the self field-generating electron, it is as good as non-existent.

However, the question of whether a potential field physically exists or not, turns out to be more subtle than what might be thought.


2. Conditions for the objective existence of electrostatic potentials:

It once again helps to think of forces first, and only then of potentials.

Consider two electrons in an otherwise empty spatial region of an isolated system. Suppose the first electron (e_1), is at a position x_1, and a second electron e_2 is at a position x_2. What Coulomb’s law now says is that the two electrons mutually exert equal and opposite forces on each other. The magnitudes of these forces are proportional to the inverse-square of the distance which separates the two. For the like charges, the forces is repulsive, and for unlike charges, it is attractive. The amount of the electrostatic forces thus exerted do not depend on mass; they depend only the amounts of the respective charges.

The potential energy of the system for this particular configuration is given by (i) arbitrarily assigning a zero potential to infinite separation between the two charges, and (ii) imagining as if both the charges have been brought from infinity to their respective current positions.

It is important to realize that the potential energy for a particular configuration of two electrons does not form a field. It is merely a single number.

However, it is possible to imagine that one of the charges (say e_1) is held fixed at a point, say at \vec{r}_1, and the other charge is successively taken, in any order, at every other point \vec{r}_2 in the infinite domain. A single number is thus generated for each pair of (\vec{r}_1, \vec{r}_2). Thus, we can obtain a mapping from the set of positions for the two charges, to a set of the potential energy numbers. This second set can be regarded as forming a field—in the 3D space.

However, notice that thus defined, the potential energy field is only a device of calculations. It necessarily refers to a second charge—the one which is imagined to be at one point in the domain at a time, with the procedure covering the entire domain. The energy field cannot be regarded as a property of the first charge alone.

Now, if the potential energy field U thus obtained is normalized by dividing it with the electric charge of the second charge, then we get the potential energy for a unit test-charge. Another name for the potential energy obtained when a unit test-charge is used for the second charge is: the electrostatic potential (denoted as V).

But still, in classical mechanics, the potential field also is only a device of calculations; it does not exist as a property of the first charge, because the potential energy itself does not exist as a property of that fixed charge alone. What does exist is the physical effect that there are those potential energy numbers for those specific configurations of the fixed charge and the test charge.

This is the reason why the potential energy field, and therefore the electrostatic potential of a single charge in an otherwise empty space does not exist. Mathematically, it is regarded as zero (though it could have been assigned any other arbitrary, constant value.)

Potentials arise only out of interaction of two charges. In classical mechanics, the charges are point-particles. Point-particles exist only at definite locations and nowhere else. Therefore, their interaction also must be seen as happening only at the locations where they do exist, and nowhere else.

If that is so, then in what sense can we at all say that potential energy (or electrostaic potential) field does physically exist?

Consider a single electron in an isolated system, again. Assume that its position remains fixed.

Suppose there were something else in the isolated system—-something—some object—every part of which undergoes an electrostatic interaction with the fixed (first) electron. If this second object were to be spread all over the domain, and if every part of it were able to interact with the fixed charge, then we could say that the potential energy field exists objectively—as an attribute of this second object. Ditto, for the electric potential field.

Note three crucially important points, now.

2.1. The second object is not the usual classical object.

You cannot regard the second (spread-out) object as a mere classical charge distribution. The reason is this.

If the second object were to be actually a classical object, then any given part of it would have to electrostatically interact with every other part of itself too. You couldn’t possibly say that a volume element in this second object interacts only with the “external” electron. But if the second object were also to be self-interacting, then what would come to exist would not be the simple inverse-distance potential field energy, in reference to that single “external” electron. The space would be filled with a very weird field. Admitting motion to the property of the local charge in the second object, every locally present charge would soon redistribute itself back “to” infinity (if it is negative), or it all would collapse into the origin (if the charge on the second object were to be positive, because the fixed electron’s field is singular). But if we allow no charge redistributions, and the second field were to be classical (i.e. capable of self-interacting), then the field of the second object would have to have singularities everywhere. Very weird. That’s why:

If you want to regard the potential field as objectively existing, you have to also posit (i.e. postulate) that the second object itself is not classical in nature.

Classical electrostatics, if it has to regard a potential field as objectively (i.e. physically) existing, must therefore come to postulate a non-classical background object!

2.2. Assuming you do posit such a (non-classical) second object (one which becomes “just” a background object), then what happens when you introduce a second electron into the system?

You would run into another seeming contradiction. You would find that this second electron has no job left to do, as far as interacting with the first (fixed) electron is concerned.

If the potential field exists objectively, then the second electron would have to just passively register the pre-existing potential in its vicinity (because it is the second object which is doing all the electrostatic interactions—all the mutual forcings—with the first electron). So, the second electron would do nothing of consequence with respect to the first electron. It would just become a receptacle for registering the force being exchanged by the background object in its local neighborhood.

But the seeming contradiction here is that as far as the first electron is concerned, it does feel the potential set up by the second electron! It may be seen to do so once again via the mediation of the background object.

Therefore, both electrons have to be simultaneously regarded as being active and passive with respect to each other. They are active as agents that establish their own potential fields, together with an interaction with the background object. But they also become passive in the sense that they are mere point-masses that only feel the potential field in the background object and experience forces (accelerations) accordingly.

The paradox is thus resolved by having each electron set up a field as a result of an interaction with the background object—but have no interaction with the other electron at all.

2.3. Note carefully what agency is assigned to what object.

The potential field has a singularity at the position of that charge which produces it. But the potential field itself is created either by the second charge (by imagining it to be present at various places), or by a non-classical background object (which, in a way, is nothing but an objectification of the potential field-calculation procedure).

Thus, there arises a duality of a kind—a double-agent nature, so to speak. The potential energy is calculated for the second charge (the one that is passive), in the sense that the potential energy is relevant for calculating the motion of the second charge. That’s because the self-field cancels out for all motions of the first charge. However,

 The potential energy is calculated for the second charge. But the field so calculated has been set up by the first (fixed) charge. Charges do not interact with each other; they interact only with the background object.

2.4. If the charges do not interact with each other, and if they interact only with the background object, then it is worth considering this question:

Can’t the charges be seen as mere conditions—points of singularities—in the background object?

Indeed, this seems to be the most reasonable approach to take. In other words,

All effects due to point charges can be regarded as field conditions within the background object. Thus, paradoxically enough, a non-classical distributed field comes to represent the classical, massive and charged point-particles themselves. (The mass becomes just a parameter of the interactions of singularities within a 3D field.) The charges (like electrons) do not exist as classical massive particles, not even in the classical electrostatics.


3. A partly analogous situation: The stress-strain fields:

If the above situation seems too paradoxical, it might be helpful to think of the stress-strain fields in solids.

Consider a horizontally lying thin plate of steel with two rigid rods welded to it at two different points. Suppose horizontal forces of mutually opposite directions are applied through the rods (either compressive or tensile). As you know, as a consequence, stress-strain fields get set up in the plate.

From an external viewpoint, the two rods are regarded as interacting with each other (exchanging forces with each other) via the medium of the plate. However, in reality, they are interacting only with the object that is the plate. The direct interaction, thus, is only between a rod and the plate. A rod is forced, it interacts with the plate, the plate sets up stress-strain field everywhere, the local stress-field near the second rod interacts with it, and the second rod registers a force—which balances out the force applied at its end. Conversely, the force applied at the second rod also can be seen as getting transmitted to the first rod via the stress-strain field in the plate material.

There is no contradiction in this description, because we attribute the stress-strain field to the plate itself, and always treat this stress-strain field as if it came into existence due to both the rods acting simultaneously.

In particular, we do not try to isolate a single-rod attribute out of the stress-strain field, the way we try to ascribe a potential to the first charge alone.

Come to think of it, if we have only one rod and if we apply force to it, no stress-strain field would result (i.e. neglecting inertia effects of the steel plate). Instead, the plate would simply move in the rigid body mode. Now, in solid mechanics, we never try to visualize a stress-strain field associated with a single rod alone.

It is a fallacy of our thinking that when it comes to electrostatics, we try to ascribe the potential to the first charge, and altogether neglect the abstract procedure of placing the test charge at various locations, or the postulate of positing a non-classical background object which carries that potential.

In the interest of completeness, it must be noted that the stress-strain fields are tensor fields (they are based on the gradients of vector fields), whereas the electrostatic force-field is a vector field (it is based on the gradient of the scalar potential field). A more relevant analogy for the electrostatic field, therefore might the forces exchanged by two point-vortices existing in an ideal fluid.


4. But why bother with it all?

The reason I went into all this discussion is because all these issues become important in the context of quantum mechanics. Even in quantum mechanics, when you have two charges that are interacting with each other, you do run into these same issues, because the Schrodinger equation does have a potential energy term in it. Consider the following situation.

If an electrostatic potential is regarded as being set up by a single charge (as is done by the proton in the nucleus of the hydrogen atom), but if it is also to be regarded as an actually existing and spread out entity (as a 3D field, the way Schrodinger’s equation assumes it to be), then a question arises: What is the role of the second charge (e.g., that of the electron in an hydrogen atom)? What happens when the second charge (the electron) is represented quantum mechanically? In particular:

What happens to the potential field if it represents the potential energy of the second charge, but the second charge itself is now being represented only via the complex-valued wavefunction?

And worse: What happens when there are two electrons, and both interacting with each other via electrostatic repulsions, and both are required to be represented quantum mechanically—as in the case of the electrons in an helium atom?

Can a charge be regarded as having a potential field as well as a wavefunction field? If so, what happens to the point-specific repulsions as are mandated by the Coulomb law? How precisely is the V(\vec{r}_1, \vec{r}_2) term to be interpreted?

I was thinking about these things when these issues occurred to me: the issue of the self-field, and the question of the physical vs. merely mathematical existence of the potential fields of two or more quantum-mechanically interacting charges.

Guess I am inching towards my full answers. Guess I have reached my answers, but I need to have them verified with some physicists.


5. The help I want:

As a part of my answer-finding exercises (to be finished by this month-end), I might be contacting a second set of physicists soon enough. The issue I want to learn from them is the following:

How exactly do they do computational modeling of the helium atom using the finite difference method (FDM), within the context of the standard (mainstream) quantum mechanics?

That is the question. Once I understand this part, I would be done with the development of my new approach to understanding QM.

I do have some ideas regarding the highlighted question. It’s just that I want to have these ideas confirmed from some physicists before (or along-side) implementing the FDM code. So, I might be approaching someone—possibly you!

Please note my question once again. I don’t want to do perturbation theory. I would also like to avoid the variational method.

Yes, I am very comfortable with the finite element method, which is basically based on the variational calculus. So, given a good (detailed enough) account of the variational method for the He atom, it should be possible to translate it into the FEM terms.

However, ideally, what I would like to do is to implement it as an FDM code.

So there.

Please suggest good references and / or people working on this topic, if you know any. Thanks in advance.


A song I like:

[… Here I thought that there was no song that Salil Chowdhury had composed and I had not listened to. (Well, at least when it comes to his Hindi songs). That’s what I had come to believe, and here trots along this one—and that too, as a part of a collection by someone! … The time-delay between my first listening to this song, and my liking it, was zero. (Or, it was a negative time-delay, if you refer to the instant that the first listening got over). … Also, one of those rare occasions when one is able to say that any linear ordering of the credits could only be random.]

(Hindi) “mada bhari yeh hawaayen”
Music: Salil Chowdhury
Lyrics: Gulzaar
Singer: Lata Mangeshkar

 

A preliminary document on my fresh new approach to QM

I have uploaded the outline document I had promised as an attachment to a blog post at iMechanica; see here [^]. I will copy-paste the text of that post below:


Hello, World!

Here is a document that jots down, in a brief, point-wise manner, the elements of my new approach to understanding quantum mechanics.

Please note that the writing is very much at a preliminary stage. It is very much a work in progress. However, it does jot down many essential ideas.

I am uploading the document at iMechanica just to have an externally verifiable time-stamp to it. Further versions will also be posted at this thread.

Comments are welcome. However, I may not be able to respond all of them immediately, because (i) I wish to immediately switch over to my studies of Data Science (ii) discussions on QM, especially on its foundations, tend to get meandering very fast.

Best,

–Ajit


It was only yesterday that I had said that preparing this document would take longer, may be a week or so. But soon later, I discarded the idea of revising the existing document (18 pages), and instead tried re-writing a separate summary for it completely afresh. Turns out that starting afresh all over again was a very good idea. Yesterday, I was at about 2 pages, and today, I finished jotting down all the ideas, at least in essence, right within 8 pages (+ 1 page of the reference section).


A song I like:

[It happens to be one of the songs which I first heard roughly around the same time that I got my own bicycle, and the times when I first came across the quantum mechanical riddles—which was during my X–XII standard days. I had liked it immediately—I mean the song. I don’t know why it doesn’t appear frequently enough on people’s lists of their favorites, but it has a very, very fresh feel to it. It anyway is a song of the teenage, of all those naive expectations and unspoiled optimism. Usha Mangeshkar, with her deft, light touch, somehow manages to bring that sense of life, that sense of freshness and confidence, fully alive in this song. The music and the lyrics are neat too… All in all, an absolutely wonderful song. … Perhaps also equally important, it is of great nostalgic value to me, too.

It used to be not easily available. So, let me give you the link to listening and buying it at Gaana.com; it’s song # 9 on this page [^] ]

(Marathi) “haa unaaD awakhaLa waaraa”
Singer: Usha Mangeshkar
Music: Dasharath Pujari
Lyrics: Ram More

 

Absolutely Random Notings on QM—Part 3: Links to some (really) interesting material, with my comments

Links, and my comments:


The “pride of place” for this post goes to a link to this book:

Norsen, Travis (2017) “Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory,” Springer

This book is (i) the best supplementary book for a self-study of QM, and simultaneously, also (ii) the best text-book on a supplementary course on QM, both at the better-prepared UG / beginning PG level.

A bit expensive though, but extensive preview is available on Google books, here [^]. (I plan to buy it once I land a job.)

I was interested in the material from the first three chapters only, more or less. It was a delight even just browsing through these chapters. I intend to read it more carefully soon enough. But even on the first, rapid browsing, I noticed that several pieces of understanding that I had so painstakingly come to develop (over a period of years) are given quite straight-forwardly here, as if they were a matter of well known facts—even if other QM text-books only cursorily mention them, if at all.

For instance, see the explanation of entanglement here. Norsen begins by identifying that there is a single wavefunction, always—even for a multi-particle system. Then after some explanation, he states: “But, as usual in quantum mechanics, these states do not exhaust the possibilities—instead, they merely form a basis for the space of all possible wave functions. …”… Note the emphasis on the word “basis” which Norsen helpfully puts.

Putting this point (which Norsen discusses with a concrete example), but in my words: There is always a single wavefunction, and for a multi-particle system, its basis is bigger; it consists of the components of the tensor product (formed from the components of the basis of the constituent systems). Sometimes, the single wavefunction for the multi-particle system can be expressed as a result of a single tensor-product (in which case it’s a separable state), and at all other times, only as an algebraic sum of the results of many such tensor-products (in which case they all are entangled states).

Notice how there is no false start of going from two separate systems, and then attempting to forge a single system out of them. Notice how, therefore, there is no hand-waving at one electron being in one galaxy, and another electron in another galaxy, and so on, as if to apologize for the very idea of the separable states. Norsen achieves the correct effect by beginning on the right note: the emphasis on the single wavefunction for the system as a whole to begin with, and then clarifying, at the right place, that what the tensor product gives you is only the basis set for the composite wavefunction.

There are many neat passages like this in the text.


I was about to say that Norsen’s book is the Resnick and Halliday of QM, but then came to hesitate saying so, because I noticed something odd even if my browsing of the book was rapid and brief.

Then I ran into

Ian Durham’s review of Norsen’s book, at the FQXi blog,

which is our link # 2 for this post [^].

Durham helpfully brings out the following two points (which I then verified during a second visit to Norsen’s book): (i) Norsen’s book is not exactly at the UG level, and (ii) the book is a bit partial to Bell’s characterization of the quantum riddles as well as to the Bohmian approach for their resolution.

The second point—viz., Norsen’s fascination for / inclination towards Bell and Bohm (B&B for short)—becomes important only because the book is, otherwise, so good: it carries so many points that are not even passingly mentioned in other QM books, is well written (in a conversational style, as if a speech-to-text translator were skillfully employed), easy to understand, thorough, and overall (though I haven’t read even 25% of it, from whatever I have browsed), it otherwise seems fairly well balanced.

It is precisely because of these virtues that you might come out giving more weightage to the B&B company than is actually due to them.

Keep that warning somewhere at the back of your mind, but do go through the book anyway. It’s excellent.

At Amazon, it has got 5 reader reviews, all with 5 stars. If I were to bother doing a review there, I too perhaps would give it 5 stars—despite its shortcomings/weaknesses. OK. At least 4 stars. But mostly 5 though. … I am in an indeterminate state of their superposition.

… But mark my words. This book will have come to shape (or at least to influence) every good exposition of (i.e. introduction to) the area of the Foundations of QM, in the years to come. [I say that, because I honestly don’t expect a better book on this topic to arrive on the scene all that soon.]


Which brings us to someone who wouldn’t assign the |4\rangle + |5\rangle stars to this book. Namely, Lubos Motl.

If Norsen has moved in the Objectivist circles, and is partial to the B&B company, Motl has worked in the string theory, and is not just partial to it but even today defends it very vigorously—and oddly enough, also looks at that “supersymmetric world from a conservative viewpoint.” More relevant to us: Motl is not partial to the Copenhagen interpretation; he is all the way into it. … Anyway, being merely partial is something you wouldn’t expect from Motl, would you?

But, of course, Motl also has a very strong grasp of QM, and he displays it well (even powerfully) when he writes a post of the title:

“Postulates of quantum mechanics almost directly follow from experiments.” [^]

Err… Why “almost,” Lubos? 🙂

… Anyway, go through Motl’s post, even if you don’t like the author’s style or some of his expressions. It has a lot of educational material packed in it. Chances are, going through Motl’s posts (like the present one) will come to improve your understanding—even if you don’t share his position.

As to me: No, speaking from the new understanding which I have come to develop regarding the foundations of QM [^] and [^], I don’t think that all of Motl’s objections would carry. Even then, just for the sake of witnessing the tight weaving-in of the arguments, do go through Motl’s post.


Finally, a post at the SciAm blog:

“Coming to grips with the implications of quantum mechanics,” by Bernardo Kastrup, Henry P. Stapp, and Menas C. Kafatos, [^].

The authors say:

“… Taken together, these experiments [which validate the maths of QM] indicate that the everyday world we perceive does not exist until observed, which in turn suggests—as we shall argue in this essay—a primary role for mind in nature.”

No, it didn’t give me shivers or something. Hey, this is QM and its foundations, right? I am quite used to reading such declarations.

Except that, as I noted a few years ago on Scott Aaronson’s blog [I need to dig up and insert the link here], and then, recently, also at

Roger Schlafly’s blog [^],

you don’t need QM in order to commit the error of inserting consciousness into a physical theory. You can accomplish exactly the same thing also by using just the Newtonian particle mechanics in your philosophical arguments. Really.


Yes, I need to take that reply (at Schlafly’s blog), edit it a bit and post it as a separate entry at this blog. … Some other time.

For now, I have to run. I have to continue working on my approach so that I am able to answer the questions raised and discussed by people such as those mentioned in the links. But before that, let me jot down a general update.


A general update:

Oh, BTW, I have taken my previous QM-related post off the top spot.

That doesn’t mean anything. In particular, it doesn’t mean that after reading into materials such as that mentioned here, I have found some error in my approach or something like that. No. Not at all.

All it means is that I made it once again an ordinary post, not a sticky post. I am thinking of altering the layout of this blog, by creating a page that highlights that post, as well as some other posts.

But coming back to my approach: As a matter of fact, I have also written emails to a couple of physicists, one from IIT Bombay, and another from IISER Pune. However, things have not worked out yet—things like arranging for an informal seminar to be delivered by me to their students, or collaborating on some QM-related simulations together. (I could do the simulations on my own, but for the seminar, I would need an audience! One of them did reply, but we still have to shake our hands in the second round.)

In the meanwhile, I go jobless, but I keep myself busy. I am preparing a shortish set of write-ups / notes which could be used as a background material when (at some vague time in future) I go and talk to some students, say at IIT Bombay/IISER Pune. It won’t be comprehensive. It will be a little more than just a white-paper, but you couldn’t possibly call it even just the preliminary notes for my new approach. Such preliminary notes would come out only after I deliver a seminar or two, to physics professors + students.

At the time of delivering my proposed seminar, links like those I have given above, esp. Travis Norsen’s book, also should prove a lot useful.

But no, I haven’t seen something like my approach being covered anywhere, so far, not even Norsen’s book. There was a vague mention of just a preliminary part of it somewhere on Roger Schlafly’s blog several years ago, only once or so, but I can definitely say that I had already had grasped even that point on my own before Schlafly’s post came. And, as far as I know, Schlafly hasn’t come to pursue that thread at all, any time later…

But speaking overall, at least as of today, I think I am the only one who has pursued this (my) line of thought to the extent I have [^].

So, there. Bye for now.


I Song I Like:
(Hindi) “suno gajar kya gaaye…”
Singer: Geeta Dutt
Music: S. D. Burman
Lyrics: Sahir Ludhianvi
[There are two Geeta’s here, and both are very fascinating: Geeta Dutt in the audio, and Geeta Bali in the video. Go watch it; even the video is recommended.]


As usual, some editing after even posting, would be inevitable.

Some updates made and some streamlining done on 30 July 2018, 09:10 hrs IST.

 

Yes I know it!—Part 2

This post directly continues from my last post. The content here was meant to be an update to my last post, but it grew, and so, I am noting it down as a separate post in its own right.


Thought about it [I mean my last post] a lot last night and this morning. I think here is a plan of action I can propose:

I can deliver a smallish, informally conducted, and yet, “official” sort of a seminar/talk/guest lecture, preferably at an IIT/IISER/IISc/similar institute. No honorarium is expected; just arrange for my stay. (That too is not necessary if it will be IIT Bombay; I can then stay with my friend; he is a professor in an engineering department there.)

Once arranged by mutual convenience, I will prepare some lecture notes (mostly hand-written), and deliver the content. (I guess at this stage, I will not prepare Beamer slides, though I might include some audio-visual content such as simulations etc.)

Questions will be OK, even encouraged, but the format will be that of a typical engineering class-room lecture. Discussions would be perfectly OK, but only after I finish talking about the “syllabus” first.

The talk should preferably be attended also by a couple of PhD students or so (of physics/engineering physics/any really relevant discipline, whether it’s acknowledged as such by UGC/AICTE or not). They should separately take down their notes and show me these later. This will help me understand where and how I should modify my notes. I will then myself finalize my notes, perhaps a few days after the talk, and send these by email. At that stage, I wouldn’t mind posting the notes getting posted on the ‘net.

Guess I will think a bit more about it, and note about my willingness to deliver the talk also at iMechanica. The bottom-line is that I am serious about this whole thing.

A few anticipated questions and their answers (or clarifications):

  1. What I have right now is, I guess, sufficient to stake a claim. But I have not taken the research to sufficiently advanced stage that I can say that I have all the clarifications worked out. It’s far more than just a sketchy conceptual idea, and does have a lot of maths too, but it’s less than, say, a completely worked out (or series of) mathematical theory. (My own anticipation is that if I can do just a series of smaller but connected mathematical models/simulations, it should be enough as my personal contribution to this new approach.)
  2. No, as far as QM is concerned, the approach I took in my PhD time publications is not at all relevant. I have completely abandoned that track (I mean to say as far as QM is concerned).
  3. However, my PhD time research on the diffusion equation has been continuing, and I am happy to announce that it has by now reached such a certain stage of maturation/completion that I should be writing another paper(s) on it any time now. I am happy that something new has come out of some 10+ years of thought on that issue, after my PhD-time work. Guess I could now send the PhD time conference paper to a journal, and then cover the new developments in this line in continuation with that one.
  4. Coming back to QM: Any one else could have easily got to the answers I have. But no, to the best of my knowledge, none else actually has. However, it does seem to me now that time is becoming ripe, and not to stake a claim at least now could be tantamount to carelessness on my part.
  5. Yes, my studies of philosophy, especially Ayn Rand’s ITOE (and Peikoff’s explanations of that material in PO and UO) did help me a lot, but all that is in a more general sense. Let me put it this way: I don’t think that I would have had to know (or even plain be conversant with) ITOE to be able to formulate these new answers to the QM riddles. And certainly, ITOE wouldn’t at all be necessary to understand my answers; the general level of working epistemology still is sufficiently good in physics (and more so, in engineering) even today.  At the same time, let me tell you one thing: QM is very vast, general, fundamental, and abstract. I guess you would have to be a “philosophizing” sort of a guy. Only then could you find this continuous and long preoccupation with so many deep and varied abstractions, interesting enough. Only then could the foundations of QM interest you. Not otherwise.
  6. To formulate answers, my natural proclivity to have to keep on looking for “physical” processes/mechanisms/objects for every mathematical idea I encounter, did help. But you wouldn’t have to have the same proclivity, let alone share my broad convictions, to be able to understand my answers. In other words, you could be a mathematical Platonist, and yet very easily come to understand the nature of my answers (and perhaps even come to agree with my positions)!
  7. To arrange for my proposed seminar/talk is to agree to be counted as a witness (for any future issues related to priority). But that’s strictly in the usual, routine, day-to-day academic sense of the term. (To wit, see how people interact with each other at a journal club in a university, or, say, at iMechanica.)
  8. But, to arrange for my talk is not to be willing to certify or validate its content. Not at all.
  9. With that being said, since this is India, let me also state a relevant concern. Don’t call me over just to show me down or ridicule me either. (It doesn’t happen in seminar talks, but it does happen during job interviews in Pune. It did happen to me in my COEP interview. It got repeated, in a milder way, in other engineering colleges in SPPU (the Pune University). So I have no choice but to note this part separately.)
  10. Once again, the issue is best clarified by giving the example. Check out how people treated me at iMechanica. If you are at an IIT/IISc/similar institute/university and are willing to treat me similarly, then do think of calling me over.

More, may be later. I will sure note my willingness to deliver a seminar at an IIT (or at a good University department) or so, at iMechanica also, soon enough. But right now I don’t have the time, and have to rush out. So let me stop here. Bye for now, and take care… (I would add a few more tags to the post-categories later on.)

Yes I know it!

Note: A long update was posted on 12th December 2017, 11:35 IST.


This post is spurred by my browsing of certain twitter feeds of certain pop-sci. writers.

The URL being highlighted—and it would be, say, “negligible,” but for the reputation of the Web domain name on which it appears—is this: [^].


I want to remind you that I know the answers to all the essential quantum mysteries.

Not only that, I also want to remind you that I can discuss about them, in person.

It’s just that my circumstances—past, and present (though I don’t know about future)—which compel me to say, definitely, that I am not available for writing it down for you (i.e. for the layman) whether here or elsewhere, as of now. Neither am I available for discussions on Skype, or via video conferencing, or with whatever “remoting” mode you have in mind. Uh… Yes… WhatsApp? Include it, too. Or something—anything—like that. Whether such requests come from some millionaire Indian in USA (and there are tons of them out there), or otherwise. Nope. A flat no is the answer for all such requests. They are out of question, bounds… At least for now.

… Things may change in future, but at least for the time being, the discussions would have to be with those who already have studied (the non-relativistic) quantum physics as it is taught in universities, up to graduate (PhD) level.

And, you have to have discussions in person. That’s the firm condition being set (for the gain of their knowledge 🙂 ).


Just wanted to remind you, that’s all!


Update on 12th December 2017, 11:35 AM IST:

I have moved the update to a new post.

 


A Song I Like:

(Western, Instrumental) “Berlin Melody”
Credits: Billy Vaughn

[The same 45 RPM thingie [as in here [^], and here [^]] . … I was always unsure whether I liked this one better or the “Come September” one. … Guess, after the n-th thought, that it was this one. There is an odd-even thing about it. For odd ‘n” I think this one is better. For even ‘n’, I think the “Come September” is better.

… And then, there also are a few more musical goodies which came my way during that vacation, and I will make sure that they find their way to you too….

Actually, it’s not the simple odd-even thing. The maths here is more complicated than just the binary logic. It’s an n-ary logic. And, I am “equally” divided among them all. (4+ decades later, I still remain divided.)… (But perhaps the “best” of them was a Marathi one, though it clearly showed a best sort of a learning coming from also the Western music. I will share it the next time.)]


[As usual, may be, another revision [?]… Is it due? Yes, one was due. Have edited streamlined the main post, and then, also added a long update on 12th December 2017, as noted above.]

 

 

Busy, busy, busy… And will be. (Aka: Random Notings in the Passing)

Have been very busy. [What’s new about that? Read on…]


First, there is that [usual] “busy-ness” on the day job.


Then, Mary Hesse (cf. my last post) does not cover tensor fields.

A tensor is a very neat mathematical structure. Essentially, you get it by taking a Cartesian product of the basis vectors of (a) space(s). A tensor field is a tensor-valued function of, say, the physical (“ambient”) space, itself a vector space and also a vector field.

Yes, that reads like the beginning paragraph of a Wiki article on a mathematical topic. Yes, you got into circles. Mathematicians always do that—esp. to you. … Well, they also try doing that, on me. But, usually, they don’t succeed. … But, yes, it does keep me busy. [Now you know why I’ve been so busy.]


Now, a few other, mostly random, notings in the passing…


As every year, the noise pollution of the Ganapati festival this year, too, has been nothing short of maddening. But this year, it has not been completely maddening. Not at least to me. The reason is, I am out of Pune. [And what a relief it is!]


OK, time to take some cognizance of the usual noises on the QM front. The only way to do that is to pick up the very best among them. … I will do that for you.

The reference is to Roger Schlafly’s latest post: “Looking for new quantum axioms”, here [^]. He in turn makes a reference to a Quanta Mag article [^] by Philip Ball, who in turn makes a reference to the usual kind of QM noises. For the last, I shall not provide you with references. … Then, in his above-cited post, Schlafly also makes a reference to the Czech physicist Lubos Motl’s blog post, here [^].

Schlafly notes that Motl “…adequately trashes it as an anti-quantum crackpot article,” and that he “will not attempt to outdo his [i.e. Motl’s] rant.” Schlafly even states that he agrees with him Motl.

Trailer: I don’t; not completely anyway.

Immediately later, however, Schlafly says quite a remarkable thing, something that is interesting in its own regard:

Instead, I focus on one fallacy at the heart of modern theoretical physics. Under this fallacy, [1] the ideal theory is one that is logically derived from postulates, and [2] where one can have a metaphysical belief in those postulates independent of messy experiments.” [Numbering of the clauses is mine.]

Hmmm…

Yes, [1] is right on, but not [2]. Both the postulates and the belief in them here are of physics; experiments—i.e. [controlled] observations of physical reality—play not just a crucial part; they play the “game-starting” part. Wish Schlafly had noted the distinction between the two clauses.

All in all, I think that, on this issue of Foundations of QM, we all seem to be not talking to each other—we seem to be just looking past each other, so to say. That’s the major reason why the field has been flourishing so damn well. Yet, all in all, I think, Schlafly and Motl are more right about it all than are Ball or the folks he quotes.

But apart from it all, let me say that Schlafly and Motl have been advocating the view that Dirac–von Neumann axioms [^] provide the best possible theoretical organization for the theory of the quantum mechanical phenomena.

I disagree.

My position is that the Dirac-von Neumann axioms have not been done with due care to the scope (and applicability) of all the individual concepts subsuming the different aspects of the quantum physical phenomena. Like all QM physicists of the past century (and continuing with those in this century as well, except for, as far as I know, me!), they confuse on one crucial issue. And that issue is at the heart and the base of the measurement/collapse postulate. Understand that one critical issue well, and the measurement/collapse postulate itself collapses in no time. I can name it—that one critical issue. In fact, it’s just one concept. Just one concept that is already well-known to science, but none thinks of it in the context of Foundations of QM. Not in the right way, anyway. [Meet me in person to learn what it is.]


OK, another thing.

I haven’t yet finished Hesse’s book. [Did you honestly expect me to do that so fast?] That, plus the fact that in my day-job, we would be working even harder, working extra hours (plus may be work on week-ends, as well).

In fact, I have already frozen all my research schedule and put it in the deep freeze section. (Not even on the back-burner, I mean.)

So, allow me to go off the blog once again for yet another 3–4 weeks or so. [And I will do that anyway, even if you don’t allow.]


A Song I Like:

[The value of this song to me is mostly nostalgic; it has some very fond memories of my childhood associated with it. As an added bonus, Shammi Kapoor looks slim(mer than his usual self) in this video, the so-called Part 2 of the song, here [^]—and thereby causes a relatively lesser irritation to the eye. [Yes, sometimes, I do refer to videos too, even in this section.]]

(Hindi) “madahosh hawaa matawaali fizaa”
Lyrics: Farooq Qaisar
Singer: Mohammed Rafi
Music: Shankar-Jaikishan

[BTW, did you guess the RD+Gulzar+Lata song I had alluded to, last time? … May be I will write a post just to note that song. Guess it might make for a  good “blog-filler” sometime during the upcoming several weeks, when I will once again be generally off the blog. … OK, take care, and bye for now….]

The goals are clear, now

This one blog post is actually a combo-pack of some 3 different posts, addressed to three different audiences: (i) to my general readers, (ii) to the engineering academics esp. in India, and (iii) to the QM experts. Let me cover it all in that order.


(I) To the general reader of this blog:

I have a couple of neat developments to report about.

I.1. First, and of immediate importance: I have received, and accepted, a job offer. Of course, the college is from a different university, not SPPU (Savitribai Phule Pune University). Just before attending this interview (in which I accepted the offer), I had also had discussions with the top management of another college, from yet another university (in another city). They too have, since then, confirmed that they are going to invite me once the dates for the upcoming UGC interviews at their college are finalized. I guess I will attend this second interview only if my approvals (the university and the AICTE approvals) for the job I have already accepted and will be joining soon, don’t go through, for whatever reason.

If you ask me, my own gut feel is that the approvals at both these universities should go through. Historically, neither of these two universities have ever had any issue with a mixed metallurgy-and-mechanical background, and especially after the new (mid-2014) GR by the Maharashtra State government (by now 2.5+ years old), the approval at these universities should be more or less only a formality, not a cause for excessive worry as such.

I told you, SPPU is the worst university in Maharashtra. And, Pune has become a real filthy, obnoxious place, speaking of its academic-intellectual atmosphere. I don’t know why the outside world still insists on calling both (the university and the city) great. I can only guess. And my guess is that brand values of institutions tend to have a long shelf life—and it would be an unrealistically longer shelf life, when the economy is mixed, not completely free. That is the broad reason. There is another, more immediate and practical reason to it, too—I mean, regarding how it all actually has come to work.

Most every engineer who graduates from SPPU these days goes into the IT field. They have been doing so for almost two decades by now. Now, in the IT field, the engineering knowledge as acquired at the college/university is hardly of any direct relevance. Hence, none cares for what academically goes on during those four years of the UG engineering—not in India, I mean—not even in IITs, speaking in comparison to what used to be the case some 3 decades ago. (For PG engineering, in most cases, the best of them go abroad or to IITs anyway.) By “none” I mean: first and foremost, the parents of the students; then the students themselves; and then, also the recruiting companies (by which, I mostly mean those from the IT field).

Now, once in the IT industry and thus making a lot of money, these people of course find it necessary to keep the brand value of “Pune University” intact. … Notice that the graduates of IITs and of COEP/VJTI etc. specifically mention their college on their LinkedIn profiles. But none from the other colleges in SPPU do. They always mention only “University of Pune”. The reason is, their colleges didn’t have as much of a brand value as did the university, when all this IT industry trend began. Now, if these SPPU-graduated engineers themselves begin to say that the university they attended was in fact bad (or had gone bad at least when they attended it), it will affect their own career growth, salaries and promotions. So, they never find it convenient to spell out the truth—who would do that? Now, the Pune education barons (not to mention the SPPU authorities) certainly are smart enough to simply latch on to this artificially inflated brand-value. The system works, even though the quality of engineering education as such has very definitely gone down. (In some respects, due to expansion of the engineering education market, the quality has actually gone up—even though my IIT/COEP classmates often find this part difficult to believe. But yes, there have been improvements too. The improvements pertain to such things as syllabii and systems (in the “ISO” sense of the term). But not to the actual delivery—not to the actually imparted education. And that‘s my point.)

When parents and recruiting companies themselves don’t care for the quality of education imparted within the four years of UG engineering, it is futile to expect that mere academicians, as a group, would do much to help the matters.

That’s why, though SPPU has become so bad, it still manages to keep its high reputation of the past—and all its current whimsies (e.g. such stupid issues as the Metallurgy-vs-Mechanical branch jumping, etc.)—completely intact.

Anyway, I am too small to fight the entire system. In any case, I was beyond the end of all my resources.

All in all, yes, I have accepted the job offer.

But despite the complaining/irritating tone that has slipped in the above write-up, I would be lying to you if I said that I was not enthusiastic about my new job. I am.

I.2. Second, and from the long-term viewpoint, the much more important development I have to report (to my general readers) is this.

I now realize that I have come to develop a conceptually consistent physical viewpoint for the maths of quantum mechanics.

(I won’t call it an “interpretation,” let alone a “philosophical interpretation.” I would call it a physics theory or a physical viewpoint.)

This work was in progress for almost a year and a half or more—since October 2015, if I go by my scribblings in the margins of my copy of Griffiths’ text-book. I still have to look-up the scribblings I made in the small pocket notebooks I maintain (more than 10 of them, I’ve finished already for QM alone). I also have yet to systematically gather and order all those other scribblings on the paper napkins I made in the restaurants. Yes, in may case, notings on the napkins is not just a metaphor; I have often actually done such notings, simply because sometimes I do forget to carry my pocket notebooks. At such times, these napkins (or those rough papers from the waiter’s order-pad), do come in handy. I have been storing them in a plastic bag, and a drawer. Once I look up all such notings systematically, I will be able to sequence the progression of my thoughts better. But yes, as a rough and ready estimate, thinking along this new line has been going on for some 1.5 years or more by now.

But it’s only recently, in December 2016 or January 2017, that I slowly grew fully confident that my new viewpoint is correct. I took about a month to verify the same, checking it from different angles, and this process still continues. … But, what the heck, let me be candid about it: the more I think about it, all that it does is to add more conceptual integrations to it. But the basic conceptual scheme, or framework, or the basic line of thought, stays the same. So, it’s it and that’s that.

Of course, detailed write-ups, (at least rough) calculations, and some (rough) simulations still have to be worked out, but I am working on them.

I have already written more than 30 pages in the main article (which I should now be converting into a multi-chapter book), and more than 50 pages in the auxiliary material (which I plan to insert in the main text, eventually).

Yes, I have implemented a source control system (SVN), and have been taking regular backups too, though I need to now implement a system of backups to two different external hard-disks.

But all this on-going process of writing will now get interrupted due to my move to the new job, in another city. My blogging too would get interrupted. So, please stay away from this blog for a while. I will try to resume both ASAP, but as of today, can’t tell when—may be a month or so.


(II) To the engineering academics among my readers, esp. the Indian academics:

I have changed my stance regarding publications. All along thus far, I had maintained that I will not publish anything in one of those “new” journals in which most every Indian engineering professor publishes these days.

However, I now realize that one of the points in the approvals (by universities, AICTE, UGC, NAAC, NBA, etc.) concerns journal papers. I have only one journal paper on my CV. Keeping the potential IPR issues in mind, all my other papers were written in only schematic way (the only exception is the diffusion paper), and for that reason, they were published only in the conference proceedings. (I had explicitly discussed this matter not just with my guide, but also with my entire PhD committee.) Of course, I made sure that all these were international conferences, pretty reputed ones, of pretty low acceptance rates (though these days the acceptance rates at these same conferences have gone significantly up (which, incidentally, should be a “good” piece of news to my new students)). But still, as a result, all but one of my papers have been only conference papers, not journal papers.

After suffering through UGC panel interviews at three different colleges (all in SPPU) I now realize that it’s futile to plead your case in front of them. They are insufferable in every sense; they stick to their guns. You can’t beat their sense of “quality,” as it were.

So, I have decided to follow their (I mean my UGC panel interviewers’) lead, and thus have now decided to publish at least three papers in such journals, right over the upcoming couple of months or so.

Forgive me if I report the same old things (which I had reported in those international conferences about a decade ago). I have been assured that conference papers are worthless and that no one reads them. Reporting the same things in journal papers should enhance, I guess, their readability. So, the investigations I report on will be the same, but now they will appear in the Microsoft Word format, and in international journals.

That’s another reason why my blogging will be sparser in the upcoming months.

That way, in the world of science and research, it has always been quite a generally accepted practice, all over the world, to first report your findings in conferences, seek your peers’ opinions on your work or your ideas, and then expand on (or correct on) the material/study, and then send it to journals. There is nothing wrong in it. Even the topmost physicists have followed precisely the same policy. … Why, come to think of it, the very first paper that ushered humanity into the quantum era itself was only a conference talk. In fact it was just a local conference, albeit in an advanced country. I mean Planck’s very first announcement regarding quantization. … So, it’s a perfectly acceptable practice.

The difference this time (I mean, in my, present, case) will be: I will contract on (and hopefully also dumb down) the contents of my conference papers, so as to match the level of the journals in which my UGC panel interviewers themselves publish.

No, the above was not a piece of sarcasm—at least I didn’t mean it, when I wrote it. I merely meant to highlight an objective fact. Given the typical length, font size, gaps in sections, and the overall treatment of the contents of these journals, I will have to both contract on and dumb down on my write-ups. … I will of course also add some new sentences here and there to escape the no-previous-publication clause, but believe me, in my case, that is a very minor worry. The important thing would be to match the level of the treatment, to use the Microsoft Word’s equation editor, and to cut down on the length. Those are my worries.

Another one of my worries is how to publish two journal papers—one good, and one bad—based on the same idea. I mean, suppose I want to publish something on the nature of the \delta of the calculus of variations, in one of these journals. … Incidentally, I do think that what I wrote on this idea right here on this blog a little ago, is worth publishing even in a good journal, say in Am. J. Phys., or at least in the Indian journal “Resonance.” So, I would like to eventually publish it one of these two journals, too. But for immediately enhancing the number of journal papers on my CV, I should immediately publish a shorter version of the same in one of these new international journals too, on an urgent basis. Now the question is: what all aspects I should withhold for now. That is my worry. That’s why, the way my current thinking goes, instead of publishing any new material (say on the \delta of CoV), I should instead simply recycle the already conference-published material.

One final point. Actually, I never did think that it was immoral to publish in such journals (I mean the ones in which my interviewers from SPPU publish). These journals do have ISSN, and they always are indexed in the Google Scholar (which is an acceptable indexing service even to NBA), and sometimes even in Scopus/PubMed etc. Personally, I had refrained from publishing in them not because I thought that it was immoral to do so, but rather because I thought it was plain stupid. I have been treating the invitations from such journals with a sense of humour all along.

But then, the way our system works, it does have the ways and the means to dumb down one and all. Including me. When my very career is at the stake, I will very easily and smoothly go along, toss away my sense of quality and propriety, and join the crowd. (But at least I will be open and forth-right about it—admitting it publicly, the way I have already done, here.)

So, that’s another reason why my blogging would be sparser over the upcoming few months, esp. this month and the next. I will be publishing in (those) journals, on a high priority.


(III) To the QM experts:

Now, a bit to QM experts. By “experts,” I mean those who have studied QM through university courses (or text-books, as in my case) to PG or PhD level. I mean, the QM as it is taught at the UG level, i.e., the non-relativistic version of it.

If you are curious about the exact nature of my ideas, well, you will have to be patient. Months, perhaps even a year, it’s going to take, before I come to write about it on my blog(s). It will take time. I have been engaged in writing about it for about a month by now, and I speak from this experience. And further, the matter of having to immediately publish journal papers in engineering will also interfere the task of writing.

However, if you are an academic in India (say a professor or even just a serious and curious PhD student of physics/chemistry/engg physics program, say at an IIT/IISc/IISER/similar) and are curious to know about my ideas… Well, just give me a call and let’s decide on a mutually convenient time to meet in person. Ditto, for academics/serious students of physics from abroad visiting India.

No, I don’t at all expect any academics in (or visiting) India to be that curious about my work. But still, theoretically speaking, assuming that someone is interested: just send me an email or call me to fix an appointment, and we will discuss my ideas, in person. We will work out at the black-board (better than working on paper, in my experience).

I am not at all hung up about maintaining secrecy until publication. It’s just that writing takes time.

One part of it is that when you write, people also expect a higher level of precision from you, and ensuring that takes time. Making general but precise statements or claims, on a most fundamental topic of physics—it’s QM itself—is difficult, very difficult. Talking to experts is, in contrast, easy—provided you know what you are talking about.

In a direct personal talk, there is a lot of room for going back and forth, jumping around the topics, hand-waving, which is not available in the mode of writing-by-one-then-reading-by-another. And, talking with experts would be easier for me because they already know the context. That’s why I specified PhD physicists/professors at this stage, and not, say, students of engineering or CS folks merely enthusiastic about QM. (Coming to humanity folks, say philosophers, I think that via this work, I have nothing—or next to nothing—to offer to their specialty.)

Personally, I am not comfortable with video-conferencing, though if the person in question is a serious academic or a reputed corporate/national lab researcher, I would sure give it a thought to it. For instance, if some professor from US/UK that I had already interacted with (say at iMechanica, or at his blog, or via emails) wants to now know about my new ideas and wants a discussion via Skype, I could perhaps go in for it—even though I would not be quite comfortable with the video-conferencing mode as such. The direct, in person talk, working together at the black-board, works best for me. I don’t find Skype comfortable enough even with my own class-mates or close personal relations. It just doesn’t work by me. So, try to keep it out.

For the same reason—the planning and the precision required in writing—I would mostly not be able to even blog about my new ideas. Interactions on blogs tends to introduce too many bifurcations in the discussion, and therefore, even though the different PoV could be valuable, such interactions should be introduced only after the first cut in the writing is already over. That’s why, the most I would be able to manage on this blog would be some isolated aspects—granted that some inconsistencies or contradictions could still easily slip in. I am not sure, but I will try to cover at least some isolated aspects from time to time.

Here’s an instance. (Let me remind you: I am addressing this part to those who have already studied QM through text-books, esp. to PhD physicists. I am not only referring to equations, but more importantly, I am assuming the context of a direct knowledge of how topics like the one below are generally treated in various books and references.)

Did you ever notice just how radical was de Broglie’s idea? I mean, for the electron, the equations de Broglie used were:

E = \hbar \nu and p = \hbar k.

Routine stuff, do you say? But notice, in the special relativity, i.e. in the classical electrodynamics, the equation for the energy of a massive particle is:
E^2 = (pc)^2 + (m_0 c^2)^2

In arriving at the relation p = \hbar k, Einstein had dropped the second term (m_0^2 c^4) from the expression for energy because radiation has no mass, and so, his hypothetical particles also would carry no mass.

When de Broglie assumed that this same expression holds also for the electron—its matter waves—what he basically was doing was: to take an expression derived for a massless particle (Einstein’s quantum of light) as is, and to assume that it would apply also for the massive particle (i.e. the electron).

In effect, what de Broglie had ended up asserting was that the matter-waves of the electron had a massless nature.

Got it? See how radical—and how subtly (indirectly, implicitly) slipped in—is that suggestion? Have you seen this aspect highlighted or discussed this way in a good university course or a text-book on modern physics or QM? …

…QM is subtle, very subtle. That’s why working out a conceptually consistent scheme for it is (and has been) such a fun.

The above observation was one of my clues in working out my new scheme. The other was the presence of the classical features in QM. Not only the pop-science books but also text-books on modern physics (and QM) had led me to believe that what the QM represented was completely radical break from the classical physic. Uh-oh. Not quite.

Radical ideas, QM does have. But completely radical? Not quite.

QM, actually, is hybrid. It does have a lot of classical elements built into it, right in its postulates. I had come to notice this part and was uncomfortable with it—I didn’t have the confidence in my own observation; I used to think that when I study more of QM, I would be shown how these classical features fall away. That part never happened, not even as my further studies of QM progressed, and so, I slowly became more confident about it. QM is hybrid, full stop. It does have classical features built right in its postulates, even in its maths. It does not represent a complete break from the classical physics—not as complete a break as physicists lead you to believe. That was my major clue.

Other clues came as my grasp of the nature of the QM maths became better and firmer, which occurred over a period of time. I mean the nature of the maths of: the Fourier theory, the variational calculus, the operator theory, and the higher-dimensional spaces.

I had come to understand the Fourier theory via my research on diffusion, and the variational calculus, via my studies (and teaching!) of FEM. The operator theory, I had come to suspect (simply comparing the way people used to write in the early days of QM, and the way they now write) was not essential to the physics of the QM theory. So I had begun mentally substituting the operators acting on the wavefunction by just a modified wavefunction itself. … Hell, do you express a classical problem—say a Poisson equation problem or a Navier-Stokes problem—via operators? These days people do, but, thankfully, the trend has not yet made it to the UG text-books to a significant extent. The whole idea of the operator theory is irrelevant to physics—its only use and relevance is in maths. … Soon enough, I then realized that the wavefunction itself is a curious construct. It’s pointless debating whether the wavefunction is ontic or epistemic, primarily because the damn thing is dimensionless. Physicists always take care to highlight the fact that its evolution is unitary, but what they never tell you, never ever highlight, is the fact that the damn thing has no dimensions. Qua a dimensionless quantity, it is merely a way of organizing some other quantities that do have a physical existence. As to its unitary evolution, well, all that this idea says is that it is merely a weighting function, so to speak. But it was while teaching thermodynamics (in Mumbai in 2014 and in Pune in 2015) that I finally connected the variational principles with the operator theory, the thermodynamic system with the quantum system, and this way then got my breakthroughs (or at least my clues).

Yet another clue was the appreciation of the fact that the world is remarkably stable. When you throw a ball, it goes through the space as a single object. The part of the huge Hilbert space of the entire universe which represents the ball—all the quantum particles in it—somehow does not come to occupy a bigger part of that space. Their relations to each other somehow stay stable. That was another clue.

As to the higher-dimensional function spaces, again, my climb was slow but steady. I had begun writing my series of posts on the idea of space. It helped. Then I worked through higher-dimensional space. A rough-and-ready version of my understanding was done right on this blog. It was then that my inchoate suspicions about the nature of the Hilbert space finally began to fall in place. There is an entrenched view, viz., that the wavefunction is a “vector” that “lives” only in a higher-dimensional abstract space, and that the existence of the tensor product over the higher-dimensional space makes it in principle impossible to visualize the wavefunction for a multi-particle quantum system, which means, any quantum system which is more complex than the hydrogen atom (i.e. a single electron). Schrodinger didn’t introduce this idea, but when Lorentz pointed out that a higher-dimensional space was implied by Schrodinger’s procedure, Schrodinger first felt frustrated, and later on, in any case, he was unable to overcome this objection. And so, this part got entrenched—and became a part of the mathematicians’ myths of QM. As my own grasp of this part of the maths became better (and it was engineers’ writings on linear algebra that helped me improve my grasp, not physicists’ or mathematicians’ (which I did attempt valiantly, and which didn’t help at all)) I got my further clues. For a clue, see my post on the CoV; I do mention, first, the Cartesian product, and then, a tensor product, in it.

Another clue was a better understanding of the nonlinear vs. linear distinction in maths. It too happened slowly.

As to others’ writings, the most helpful clue came from the “anti-photon” paper by (the Nobel laureate) W. E. Lamb. Among the bloggers, I found some of the write-ups by Lubos Motl to be really helpful; also a few by Schlafly. Discussions on Scott Aaronson’s blog were useful to check out the different perspectives on the quantum problems.

The most stubborn problem for me perhaps was the measurement problem, i.e. the collapse postulate. But to say anything more about it right away would be premature—it would too premature, in fact. I want to do it right—even though I will surely follow the adage that a completed document is better than a perfect document. Perfection may get achieved only on collapse, but I happily don’t carry the notion that a good treatment on the collapse postulate has to be preceded by a collapse.

Though the conceptual framework I now have in mind is new, once it is published, it would not be found, I think, to be very radically new—not by the working physicists or the QM experts themselves anyway. …

.. I mean, personally speaking, when I for the first time thought of this new way of thinking about the QM maths, it was radically new (and radically clarifying) to me. (As I said, it happened slowly, over a period of time, starting, may be, from second half of 2015 or so if not earlier).

But since then, through my regular searches on the ‘net, I have found that other people have been suggesting somewhat similar ideas for quite some time, though they have been, IMO, not as fully consistent as they could have been. For example, see Philip Wallace[^]’s work (which I came across only recently, right this month). Or, see Martin Ligare[^]’s papers (which I ran into just last month, on the evening of 25th January, to be precise). … Very close to my ideas, but not quite the same. And, not as conceptually comprehensive, if that’s the right word to use for it.

My tentative plan as of now is to first finish writing the document (already 30+ pages, as I mentioned above in the first section). This document is in the nature of a conceptual road-map, or a position/research-program paper. Call it a white-paper sort of a document, say. I want to finish it first. Simultaneously, I will also try to do some simulations or so, and only then go for writing papers for (good) journals. … Sharing of ideas on this blog wouldn’t have to wait until the papers though; it could begin much earlier than that, in fact as soon as the position paper is done, which should be after a few months—say by June-July at the earliest. I will try to keep this position paper as brief as possible, say under 100 pages.

Let’s see how it all goes. I will keep you updated. But yes, the goals are clear now.


I wrote this lengthy a post (almost 5000 words) because I did want to get all these things from my mind and on to the blog. But since in the immediate future I would be busy in organizing for the move (right from hunting for a house/flat to rent, to deciding on what all stuff to leave in Pune for the time being and what all to take with me), to the actual move (the actual packing, moving, and unpacking etc.), I wouldn’t get the time to blog over the next 2–3 weeks, may be until it’s March already. Realizing it, I decided to just gather all this material, which is worth 3 posts, and to dump it all together in this single post. So, there.


Bye for now.


[As usual, a minor revision or two may be done later.]

“Measure for Measure”—a pop-sci video on QM

This post is about a video on QM for the layman. The title of the video is: “Measure for Measure: Quantum Physics and Reality” [^]. It is also available on YouTube, here [^].

I don’t recall precisely where on the ‘net I saw the video being mentioned. Anyway, even though its running time is 01:38:43 (i.e. 1 hour, 38 minutes, making it something like a full-length feature film), I still went ahead, downloaded it and watched it in full. (Yes, I am that interested in QM!)

The video was shot live at an event called “World Science Festival.” I didn’t know about it beforehand, but here is the Wiki on the festival [^], and here is the organizer’s site [^].

The event in the video is something like a panel discussion done on stage, in front of a live audience, by four professors of physics/philosophy. … Actually five, including the moderator.

Brian Greene of Columbia [^] is the moderator. (Apparently, he co-founded the World Science Festival.) The discussion panel itself consists of: (i) David Albert of Columbia [^]. He speaks like a philosopher but seems inclined towards a specific speculative theory of QM, viz. the GRW theory. (He has that peculiar, nasal, New York accent… Reminds you of Dr. Harry Binswanger—I mean, by the accent.) (ii) Sheldon Goldstein of Rutgers [^]. He is a Bohmian, out and out. (iii) Sean Carroll of CalTech [^]. At least in the branch of the infinity of the universes in which this video unfolds, he acts 100% deterministically as an Everettian. (iv) Ruediger Schack of Royal Holloway (the spelling is correct) [^]. I perceive him as a QBist; guess you would, too.

Though the video is something like a panel discussion, it does not begin right away with dudes sitting on chairs and talking to each other. Even before the panel itself assembles on the stage, there is a racy introduction to the quantum riddles, mainly on the wave-particle duality, presented by the moderator himself. (Prof. Greene would easily make for a competent TV evangelist.) This part runs for some 20 minutes or so. Then, even once the panel discussion is in progress, it is sometimes interwoven with a few short visualizations/animations that try to convey the essential ideas of each of the above viewpoints.

I of course don’t agree with any one of these approaches—but then, that is an entirely different story.

Coming back to the video, yes, I do want to recommend it to you. The individual presentations as well as the panel discussions (and comments) are done pretty well, in an engaging and informal way. I did enjoy watching it.


The parts which I perhaps appreciated the most were (i) the comment (near the end) by David Albert, between 01:24:19–01:28:02, esp. near 1:27:20 (“small potatoes”) and, (ii) soon later, another question by Brian Greene and another answer by David Albert, between 01:33:26–01:34:30.

In this second comment, David Albert notes that “the serious discussions of [the foundational issues of QM] … only got started 20 years ago,” even though the questions themselves do go back to about 100 years ago.

That is so true.

The video was recorded recently. About 20 years ago means: from about mid-1990s onwards. Thus, it is only from mid-1990s, Albert observes, that the research atmosphere concerning the foundational issues of QM has changed—he means for the better. I think that is true. Very true.

For instance, when I was in UAB (1990–93), the resistance to attempting even just a small variation to the entrenched mainstream view (which means, the Copenhagen interpretation (CI for short)) was so enormous and all pervading, I mean even in the US/Europe, that I was dead sure that a graduate student like me would never be able to get his nascent ideas on QM published, ever. It therefore came as a big (and a very joyous) surprise to me when my papers on QM actually got accepted (in 2005). … Yes, the attitudes of physicists have changed. Anyway, my point here is, the mainstream view used to be so entrenched back then—just about 20 years ago. The Copenhagen interpretation still was the ruling dogma, those days. Therefore, that remark by Prof. Albert does carry some definite truth.


Prof. Albert’s observation also prompts me to pose a question to you.

What could be the broad social, cultural, technological, economic, or philosophic reasons behind the fact that people (researchers, graduate students) these days don’t feel the same kind of pressure in pursuing new ideas in the field of Foundations of QM? Is the relatively greater ease of publishing papers in foundations of QM, in your opinion, an indication of some negative trends in the culture? Does it show a lowering of the editorial standards? Or is there something positive about this change? Why has it become easier to discuss foundations of QM? What do you think?

I do have my own guess about it, and I would sure like to share it with you. But before I do that, I would very much like to hear from you.

Any guesses? What could be the reason(s) why the serious discussions on foundations of QM might have begun to occur much more freely only after mid-1990s—even though the questions had been raised as early as in 1920s (or earlier)?

Over to you.


Greetings in advance for the Republic Day. I [^] am still jobless.


[E&OE]