Do you really need a QC in order to have a really unpredictable stream of bits?

0. Preliminaries:

This post has reference to Roger Schlafly’s recent post [^] in which he refers to Prof. Scott Aaronson’s post touching on the issue of the randomness generated by a QC vis-a-vis that obtained using the usual classical hardware [^], in particular, to Aaronson’s remark:

“the whole point of my scheme is to prove to a faraway skeptic—one who doesn’t trust your hardware—that the bits you generated are really random.”

I do think (based on my new approach to QM [(PDF) ^]) that building a scalable QC is an impossible task.

I wonder if they (the QC enthusiasts) haven’t already begun realizing the hopelessness of their endeavours, and thus haven’t slowly begun preparing for a graceful exit, say via the QC-as-a-RNG route.

While Aaronson’s remarks also saliently involve the element of the “faraway” skeptic, I will mostly ignore that consideration here in this post. I mean to say, initially, I will ignore the scenario in which you have to transmit random bits over a network, and still have to assure the skeptic that what he was getting at the receiving end was something coming “straight from the oven”—something which was not tampered with, in any way, during the transit. The skeptic would have to be specially assured in this scenario, because a network is inherently susceptible to a third-party attack wherein the attacker seeks to exploit the infrastructure of the random keys distribution to his advantage, via injection of systematic bits (i.e. bits of his choice) that only appear random to the intended receiver. A system that quantum-mechanically entangles the two devices at the two ends of the distribution channel, does logically seem to have a very definite advantage over a combination of ordinary RNGs and classical hardware for the network. However, I will not address this part here—not for the most part, and not initially, anyway.

Instead, for most of this post, I will focus on just one basic question:

Can any one be justified in thinking that an RNG that operates at the QM-level might have even a slightest possible advantage, at least logically speaking, over another RNG that operates at the CM-level? Note, the QM-level RNG need not always be a general purpose and scalable QC; it can be any simple or special-purpose device that exploits, and at its core operates at, the specifically QM-level.

Even if I am a 100% skeptic of the scalable QC, I also think that the answer on this latter count is: yes, perhaps you could argue that way. But then, I think, your argument would still be pointless.

Let me explain, following my approach, why I say so.


2. RNGs as based on nonlinearities. Nonlinearities in QM vs. those in CM:

2.1. Context: QM involves IAD:

QM does involve either IAD (instantaneous action a distance), or very, very large (decidedly super-relativistic) speeds for propagation of local changes over all distant regions of space.

From the experimental evidence we have, it seems that there have to be very, very high speeds of propagation, for even smallest changes that can take place in the \Psi and V fields. The Schrodinger equation assumes infinitely large speeds for them. Such obviously cannot be the case—it is best to take the infinite speeds as just an abstraction (as a mathematical approximation) to the reality of very, very high actual speeds. However, the experimental evidence also indicates that even if there has to be some or the other upper bound to the speeds v, with v \gg c, the speeds still have to be so high as to seemingly approach infinity, if the Schrodinger formalism is to be employed. And, of course, as you know it, Schrodinger’s formalism is pretty well understood, validated, and appreciated [^]. (For more on the speed limits and IAD in general, see the addendum at the end of this post.)

I don’t know the relativity theory or the relativistic QM. But I guess that since the electric fields of massive QM particles are non-uniform (they are in fact singular), their interactions with \Psi must be such that the system has to suddenly snap out of some one configuration and in the same process snap into one of the many alternative possible configurations. Since there are huge (astronomically large) number of particles in the universe, the alternative configurations would be {astronomically large}^{very large}—after all, the particles positions and motions are continuous. Thus, we couldn’t hope to calculate the propagation speeds for the changes in the local features of a configuration in terms of all those irreversible snap-out and snap-in events taken individually. We must take them in an ensemble sense. Further, the electric charges are massive, identical, and produce singular and continuous fields. Overall, it is the ensemble-level effects of these individual quantum mechanical snap-out and snap-in events whose end-result would be: the speed-of-light limitation of the special relativity (SR). After all, SR holds on the gross scale; it is a theory from classical electrodynamics. The electric and magnetic fields of classical EM can be seen as being produced by the quantum \Psi field (including the spinor function) of large ensembles of particles in the limit that the number of their configurations approaches infinity, and the classical EM waves i.e. light are nothing but the second-order effects in the classical EM fields.

I don’t know. I was just loud-thinking. But it’s certainly possible to have IAD for the changes in \Psi and V, and thus to have instantaneous energy transfers via photons across two distant atoms in a QM-level description, and still end up with a finite limit for the speed of light (c) for large collections of atoms.

OK. Enough of setting up the context.

2.2: The domain of dependence for the nonlinearity in QM vs. that in CM:

If QM is not linear, i.e., if there is a nonlinearity in the \Psi field (as I have proposed), then to evaluate the merits of the QM-level and CM-level RNGs, we have to compare the two nonlinearities: those in the QM vs. those in the CM.

The classical RNGs are always based on the nonlinearities in CM. For example:

  • the nonlinearities in the atmospheric electricity (the “static”) [^], or
  • the fluid-dynamical nonlinearities (as shown in the lottery-draw machines [^], or the lava lamps [^]), or
  • some or the other nonlinear electronic circuits (available for less than $10 in hardware stores)
  • etc.

All of them are based on two factors: (i) a large number of components (in the core system generating the random signal, not necessarily in the part that probes its state), and (ii) nonlinear interactions among all such components.

The number of variables in the QM description is anyway always larger: a single classical atom is seen as composed from tens, even hundreds of quantum mechanical charges. Further, due to the IAD present in the QM theory, the domain of dependence (DoD) [^] in QM remains, at all times, literally the entire universe—all charges are included in it, and the entire \Psi field too.

On the other hand, the DoD in the CM description remains limited to only that finite region which is contained in the relevant past light-cone. Even when a classical system is nonlinear, and thus gets crazy very rapidly with even small increases in the number of degrees of freedom (DOFs), its DoD still remains finite and rather very small at all times. In contrast, the DoD of QM is the whole universe—all physical objects in it.

2.3 Implication for the RNGs:

Based on the above-mentioned argument, which in my limited reading and knowledge Aaronson has never presented (and neither has any one else either, basically because they all continue to believe in von Neumann’s characterization of QM as a linear theory), an RNG operating at the QM level does seem to have, “logically” speaking, an upper hand over an RNG operating at the CM level.

Then why do I still say that arguing for the superiority of a QM-level RNG is still pointless?


3. The MVLSN principle, and its epistemological basis:

If you apply a proper epistemology (and I have in my mind here the one by Ayn Rand), then the supposed “logical” difference between the two descriptions becomes completely superfluous. That’s because the quantities whose differences are being examined, themselves begin to lose any epistemological standing.

The reason for that, in turn, is what I call the MVLSN principle: the law of the Meaninglessness of the Very Large or very Small Numbers (or scales).

What the MVLSN principle says is that if your argument crucially depends on the use of very large (or very small) quantities and relationships between them, i.e., if the fulcrum of your argument rests on some great extrapolations alone, then it begins to lose all cognitive merit. “Very large” and “very small” are contextual terms here, to be used judiciously.

Roughly speaking, if this principle is applied to our current situation, what it says is that when in your thought you cross a certain limit of DOFs and hence a certain limit of complexity (which anyway is sufficiently large as to be much, much beyond the limit of any and every available and even conceivable means of predictability), then any differences in the relative complexities (here, of the QM-level RNGs vs. the CM-level RNGs) ought to be regarded as having no bearing at all on knowledge, and therefore, as having no relevance in any practical issue.

Both QM-level and CM-level RNGs would be far too complex for you to devise any algorithm or a machine that might be able to predict the sequence of the bits coming out of either. Really. The complexity levels already grow so huge, even with just the classical systems, that it’s pointless trying to predict the the bits. Or, to try and compare the complexity of the classical RNGs with the quantum RNGs.

A clarification: I am not saying that there won’t be any systematic errors or patterns in the otherwise random bits that a CM-based RNG produces. Sure enough, due statistical testing and filtering is absolutely necessary. For instance, what the radio-stations or cell-phone towers transmit are, from the viewpoint of a RNG based on radio noise, systematic disturbances that do affect its randomness. See random.org [^] for further details. I am certainly not denying this part.

All that I am saying is that the sheer number of DOF’s involved itself is so huge that the very randomness of the bits produced even by a classical RNG is beyond every reasonable doubt.

BTW, in this context, do see my previous couple of posts dealing with probability, indeterminism, randomness, and the all-important system vs. the law distinction here [^], and here [^].


4. To conclude my main argument here…:

In short, even “purely” classical RNGs can be way, way too complex for any one to be concerned in any way about their predictability. They are unpredictable. You don’t have to go chase the QM level just in order to ensure unpredictability.

Just take one of those WinTV lottery draw machines [^], start the air flow, get your prediction algorithm running on your computer (whether classical or quantum), and try to predict the next ball that would come out once the switch is pressed. Let me be generous. Assume that the switch gets pressed at exactly predictable intervals.

Go ahead, try it.


5. The Height of the Tallest Possible Man (HTPM):

If you still insist on the supposedly “logical” superiority of the QM-level RNGs, make sure to understand the MVLSN principle well.

The issue here is somewhat like asking this question:

What could possibly be the upper limit to the height of man, taken as a species? Not any other species (like the legendary “yeti”), but human beings, specifically. How tall can any man at all get? Where do you draw the line?

People could perhaps go on arguing, with at least some fig-leaf of epistemological legitimacy, over numbers like 12 feet vs. 14 feet as the true limit. (The world record mentioned in the Guinness Book is slightly under 9 feet [^]. The ceiling in a typical room is about 10 feet high.) Why, they could even perhaps go like: “Ummmm… may be 12 feet is more likely a limit than 24 feet? whaddaya say?”

Being very generous of spirit, I might still describe this as a borderline case of madness. The reason is, in the act of undertaking even just a probabilistic comparison like that, the speaker has already agreed to assign non-zero probabilities to all the numbers belonging to that range. Realize, no one would invoke the ideas of likelihood or probability theory if he thought that the probability for an event, however calculated, was always going to be zero. He would exclude certain kinds of ranges from his analysis to begin with—even for a stochastic analysis. … So, madness it is, even if, in my most generous mood, I might regard it as a borderline madness.

But if you assume that a living being has all the other characteristic of only a human being (including being naturally born to human parents), and if you still say that in between the two statements: (A) a man could perhaps grow to be 100 feet tall, and (B) a man could perhaps grow to be 200 feet tall, it is the statement (A) which is relatively and logically more reasonable, then what the principle (MVLSN) says is this: “you basically have lost all your epistemological bearing.”

That’s nothing but complex (actually, philosophic) for saying that you have gone mad, full-stop.

The law of the meaningless of the very large or very small numbers does have a certain basis in epistemology. It goes something like this:

Abstractions are abstractions from the actually perceived concretes. Hence, even while making just conceptual projections, the range over which a given abstraction (or concept) can remain relevant is determined by the actual ranges in the direct experience from which they were derived (and the nature, scope and purpose of that particular abstraction, the method of reaching it, and its use in applications including projections). Abstractions cannot be used in disregard of the ranges of the measurements over which they were formed.

I think that after having seen the sort of crazy things that even simplest nonlinear systems with fewest variables and parameters can do (for instance, which weather agency in the world can make predictions (to the accuracy demanded by newspapers) beyond 5 days? who can predict which way is the first vortex going to be shed even in a single cylinder experiment?), it’s very easy to conclude that the CM-level vs. QM-level RNG distinction is comparable to the argument about the greater reasonableness of a 100 feet tall man vs. that of a 200 feet tall man. It’s meaningless. And, madness.


6. Aaronson’s further points:

To be fair, much of the above write-up was not meant for Aaronson; he does readily grant the CM-level RNGs validity. What he says, immediately after the quote mentioned at the beginning of this post, is that if you don’t have the requirement of distributing bits over a network,

…then generating random bits is obviously trivial with existing technology.

However, since Aaronson believes that QM is a linear theory, he does not even consider making a comparison of the nonlinearities involved in QM and CM.

I thought that it was important to point out that even the standard (i.e., Schrodinger’s equation-based) QM is nonlinear, and further, that even if this fact leads to some glaring differences between the two technologies (based on the IAD considerations), such differences still do not lead to any advantages whatsoever for the QM-level RNG, as far as the task of generating random bits is concerned.

As to the task of transmitting them over a network is concerned, Aaronson then notes:

If you do have the requirement, on the other hand, then you’ll have to do something interesting—and as far as I know, as long as it’s rooted in physics, it will either involve Bell inequality violation or quantum computation.

Sure, it will have to involve QM. But then, why does it have to be only a QC? Why not have just special-purpose devices that are quantum mechanically entangled over wires / EM-waves?

And finally, let me come to yet another issue: But why would you at all have to have that requirement?—of having to transmit the keys over a network, and not using any other means?

Why does something as messy as a network have to get involved for a task that is as critical and delicate as distribution of some super-specially important keys? If 99.9999% of your keys-distribution requirements can be met using “trivial” (read: classical) technologies, and if you can also generate random keys using equipment that costs less than $100 at most, then why do you have to spend billions of dollars in just distributing them to distant locations of your own offices / installations—especially if the need for changing the keys is going to be only on an infrequent basis? … And if bribing or murdering a guy who physically carries a sealed box containing a thumb-drive having secret keys is possible, then what makes the guys manning the entangled stations suddenly go all morally upright and also immortal?

From what I have read, Aaronson does consider such questions even if he seems to do so rather infrequently. The QC enthusiasts, OTOH, never do.

As I said, this QC as an RNG thing does show some marks of trying to figure out a respectable exit-way out of the scalable QC euphoria—now that they have already managed to wrest millions and billions in their research funding.

My two cents.


Addendum on speed limits and IAD:

Speed limits are needed out of the principle that infinity is a mathematical concept and cannot metaphysically exist. However, the nature of the ontology involved in QM compels us to rethink many issues right from the beginning. In particular, we need to carefully distinguish between all the following situations:

  1. The transportation of a massive classical object (a distinguishable, i.e. finite-sized, bounded piece of physical matter) from one place to another, in literally no time.
  2. The transmission of the momentum or changes in it (like forces or changes in them) being carried by one object, to a distant object not in direct physical contact, in literally no time.
  3. Two mutually compensating changes in the local values of some physical property (like momentum or energy) suffered at two distant points by the same object, a circumstance which may be viewed from some higher-level or abstract perspective as transmission of the property in question over space but in no time. In reality, it’s just one process of change affecting only one object, but it occurs in a special way: in mutually compensating manner at two different places at the same time.

Only the first really qualifies to be called spooky. The second is curious but not necessarily spooky—not if you begin to regard two planets as just two regions of the same background object, or alternatively, as two clearly different objects which are being pulled in various ways at the same time and in mutually compensating ways via some invisible strings or fields that shorten or extend appropriately. The third one is not spooky at all—the object that effects the necessary compensations is not even a third object (like a field). Both the interacting “objects” and the “intervening medium” are nothing but different parts of one and the same object.

What happens in QM is the third possibility. I have been describing such changes as occurring with an IAD (instantaneous action at a distance), but now I am not too sure if such a usage is really correct or not. I now think that it is not. The term IAD should be reserved only for the second category—it’s an action that gets transported there. As to the first category, a new term should be coined: ITD (instantaneous transportation to distance). As to the third category, the new term could be IMCAD (instantaneous and mutually compensating actions at a distance). However, this all is an afterthought. So, in this post, I only have ended up using the term IAD even for the third category.

Some day I will think more deeply about it and straighten out the terminology, may be invent some or new terms to describe all the three situations with adequate directness, and then choose the best… Until then, please excuse me and interpret what I am saying in reference to context. Also, feel free to suggest good alternative terms. Also, let me know if there are any further distinctions to be made, i.e., if the above classification into three categories is not adequate or refined enough. Thanks in advance.


A song I like:

[A wonderful “koLi-geet,” i.e., a fisherman’s song. Written by a poet who hailed not from the coastal “konkaN” region but from the interior “desh.” But it sounds so authentically coastal… Listening to it today instantly transported me back to my high-school days.]

(Marathi) “suTalaa vaadaLi vaaraa…”
Singing, Music and Lyrics: Shaahir Amar Sheikh

 


History: Originally published on 2019.07.04 22:53 IST. Extended and streamlined considerably on 2019.07.05 11:04 IST. The songs section added: 2019.07.05 17:13 IST. Further streamlined, and also further added a new section (no. 6.) on 2019.07.5 22:37 IST. … Am giving up on this post now. It grew from about 650 words (in a draft for a comment at Schlafly’s blog) to 3080 words as of now. Time to move on.

Still made further additions and streamlining for a total of ~3500 words, on 2019.07.06 16:24 IST.

Advertisements

Learnability of machine learning is provably an undecidable?—part 3: closure

Update on 23 January 2019, 17:55 IST:

In this series of posts, which was just a step further from the initial, brain-storming kind of a stage, I had come to the conclusion that based on certain epistemological (and metaphysical) considerations, Ben-David et al.’s conclusion (that learnability can be an undecidable) is logically untenable.

However, now, as explained here [^], I find that this particular conclusion which I drew, was erroneous. I now stand corrected, i.e., I now consider Ben-David et al.’s result to be plausible. Obviously, it merits a further, deeper, study.

However, even as acknowledging the above-mentioned mistake, let me also hasten to clarify that I still stick to my other positions, especially the central theme in this series of posts. The central theme here was that there are certain core features of the set theory which make implications such as Godel’s incompleteness theorems possible. These features (of the set theory) demonstrably carry a glaring epistemological flaw such that applying Godel’s theorem outside of its narrow technical scope in mathematics or computer science is not permissible. In particular, Godel’s incompleteness theorem does not apply to knowledge or its validation in the more general sense of these terms. This theme, I believe, continues to hold as is.

Update over.


Gosh! I gotta get this series out of my hand—and also head! ASAP, really!! … So, I am going to scrap the bits and pieces I had written for it earlier; they would have turned this series into a 4- or 5-part one. Instead, I am going to start entirely afresh, and I am going to approach this topic from an entirely different angle—a somewhat indirect but a faster route, sort of like a short-cut. Let’s get going.


Statements:

Open any article, research paper, book or a post, and what do you find? Basically, all these consist of sentences after sentences. That is, a series of statements, in a way. That’s all. So, let’s get going at the level of statements, from a “logical” (i.e. logic-thoretical) point of view.

Statements are made to propose or to identify (or at least to assert) some (or the other) fact(s) of reality. That’s what their purpose is.


The conceptual-level consciousness as being prone to making errors:

Coming to the consciousness of man, there are broadly two levels of cognition at which it operates: the sensory-perceptual, and the conceptual.

Examples of the sensory-perceptual level consciousness would consist of reaching a mental grasp of such facts of reality as: “This object exists, here and now;” “this object has this property, to this much degree, in reality,” etc. Notice that what we have done here is to take items of perception, and put them into the form of propositions.

Propositions can be true or false. However, at the perceptual level, a consciousness has no choice in regard to the truth-status. If the item is perceived, that’s it! It’s “true” anyway. Rather, perceptions are not subject to a test of truth- or false-hoods; they are at the very base standards of deciding truth- or false-hoods.

A consciousness—better still, an organism—does have some choice, even at the perceptual level. The choice which it has exists in regard to such things as: what aspect of reality to focus on, with what degree of focus, with what end (or purpose), etc. But we are not talking about such things here. What matters to us here is just the truth-status, that’s all. Thus, keeping only the truth-status in mind, we can say that this very idea itself (of a truth-status) is inapplicable at the purely perceptual level. However, it is very much relevant at the conceptual level. The reason is that at the conceptual level, the consciousness is prone to err.

The conceptual level of consciousness may be said to involve two different abilities:

  • First, the ability to conceive of (i.e. create) the mental units that are the concepts.
  • Second, the ability to connect together the various existing concepts to create propositions which express different aspects of the truths pertaining to them.

It is possible for a consciousness to go wrong in either of the two respects. However, mistakes are much more easier to make when it comes to the second respect.

Homework 1: Supply an example of going wrong in the first way, i.e., right at the stage of forming concepts. (Hint: Take a concept that is at least somewhat higher-level so that mistakes are easier in forming it; consider its valid definition; then modify its definition by dropping one of its defining characteristics and substituting a non-essential in it.)

Homework 2: Supply a few examples of going wrong in the second way, i.e., in forming propositions. (Hint: I guess almost any logical fallacy can be taken as a starting point for generating examples here.)


Truth-hood operator for statements:

As seen above, statements (i.e. complete sentences that formally can be treated as propositions) made at the conceptual level can, and do, go wrong.

We therefore define a truth-hood operator which, when it operates on a statement, yields the result as to whether the given statement is true or non-true. (Aside: Without getting into further epistemological complexities, let me note here that I reject the idea of the arbitrary, and thus regard non-true as nothing but a sub-category of the false. Thus, in my view, a proposition is either true or it is false. There is no middle (as Aristotle said), or even an “outside” (like the arbitrary) to its truth-status.)

Here are a few examples of applying the truth-status (or truth-hood) operator to a statement:

  • Truth-hood[ California is not a state in the USA ] = false
  • Truth-hood[ Texas is a state in the USA ] = true
  • Truth-hood[ All reasonable people are leftists ] = false
  • Truth-hood[ All reasonable people are rightists ] = false
  • Truth-hood[ Indians have significantly contributed to mankind’s culture ] = true
  • etc.

For ease in writing and manipulation, we propose to give names to statements. Thus, first declaring

A: California is not a state in the USA

and then applying the Truth-hood operator to “A”, is fully equivalent to applying this operator to the entire sentence appearing after the colon (:) symbol. Thus,

Truth-hood[ A ] <==> Truth-hood[ California is not a state in the USA ] = false


Just a bit of the computer languages theory: terminals and non-terminals:

To take a short-cut through this entire theory, we would like to approach the idea of statements from a little abstract perspective. Accordingly, borrowing some terminology from the area of computer languages, we define and use two types of symbols: terminals and non-terminals. The overall idea is this. We regard any program (i.e. a “write-up”) written in any computer-language as consisting of a sequence of statements. A statement, in turn, consists of certain well-defined arrangement of words or symbols. Now, we observe that symbols (or words) can be  either terminals or non-terminals.

You can think of a non-terminal symbol in different ways: as higher-level or more abstract words, as “potent” symbols. The non-terminal symbols have a “definition”—i.e., an expansion rule. (In CS, it is customary to call an expansion rule a “production” rule.) Here is a simple example of a non-terminal and its expansion:

  • P => S1 S2

where the symbol “=>” is taken to mean things like: “is the same as” or “is fully equivalent to” or “expands to.” What we have here is an example of an abstract statement. We interpret this statement as the following. Wherever you see the symbol “P,” you may substitute it using the train of the two symbols, S1 and S2, written in that order (and without anything else coming in between them).

Now consider the following non-terminals, and their expansion rules:

  • P1 => P2 P S1
  • P2 => S3

The question is: Given the expansion rules for P, P1, and P2, what exactly does P1 mean? what precisely does it stand for?

Answer:

  • P1 => (P2) P S1 => S3 (P) S1 => S3 S1 S2 S1

In the above, we first take the expansion rule for P1. Then, we expand the P2 symbol in it. Finally, we expand the P symbol. When no non-terminal symbol is left to expand, we arrive at our answer that “P1” means the same as “S3 S1 S2 S1.” We could have said the same fact using the colon symbol, because the colon (:) and the “expands to” symbol “=>” mean one and the same thing. Thus, we can say:

  • P1: S3 S1 S2 S1

The left hand-side and the right hand-side are fully equivalent ways of saying the same thing. If you want, you may regard the expression on the right hand-side as a “meaning” of the symbol on the left hand-side.

It is at this point that we are able to understand the terms: terminals and non-terminals.

The symbols which do not have any further expansion for them are called, for obvious reasons, the terminal symbols. In contrast, non-terminal symbols are those which can be expanded in terms of an ordered sequence of non-terminals and/or terminals.

We can now connect our present discussion (which is in terms of computer languages) to our prior discussion of statements (which is in terms of symbolic logic), and arrive at the following correspondence:

The name of every named statement is a non-terminal; and the statement body itself is an expansion rule.

This correspondence works also in the reverse direction.

You can always think of a non-terminal (from a computer language) as the name of a named proposition or statement, and you can think of an expansion rule as the body of the statement.

Easy enough, right? … I think that we are now all set to consider the next topic, which is: liar’s paradox.


Liar’s paradox:

The liar paradox is a topic from the theory of logic [^]. It has been resolved by many people in different ways. We would like to treat it from the viewpoint of the elementary computer languages theory (as covered above).

The simplest example of the liar paradox is , using the terminology of the computer languages theory, the following named statement or expansion rule:

  • A: A is false.

Notice, it wouldn’t be a paradox if the same non-terminal symbol, viz. “A” were not to appear on both sides of the expansion rule.

To understand why the above expansion rule (or “definition”) involves a paradox, let’s get into the game.

Our task will be to evaluate the truth-status of the named statement that is “A”. This is the “A” which comes on the left hand-side, i.e., before the colon.

In symbolic logic, a statement is nothing but its expansion; the two are exactly and fully identical, i.e., they are one and the same. Accordingly, to evaluate the truth-status of “A” (the one which comes before the colon), we consider its expansion (which comes after the colon), and get the following:

  • Truth-hood[ A ] = Truth-hood[ A is false ] = false           (equation 1)

Alright. From this point onward, I will drop explicitly writing down the Truth-hood operator. It is still there; it’s just that to simplify typing out the ensuing discussion, I am not going to note it explicitly every time.

Anyway, coming back to the game, what we have got thus far is the truth-hood status of the given statement in this form:

  • A: “A is false”

Now, realizing that the “A” appearing on the right hand-side itself also is a non-terminal, we can substitute for its expansion within the aforementioned expansion. We thus get to the following:

  • A: “(A is false) is false”

We can apply the Truth-hood operator to this expansion, and thereby get the following: The statement which appears within the parentheses, viz., the “A is false” part, itself is false. Accordingly, the Truth-hood operator must now evaluate thus:

  • Truth-hood[ A ] = Truth-hood[ A is false] = Truth-hood[ (A is false) is false ] = Truth-hood[ A is true ] = true            (equation 2)

Fun, isn’t it? Initially, via equation 1, we got the result that A is false. Now, via equation 2, we get the result that A is true. That is the paradox.

But the fun doesn’t stop there. It can continue. In fact, it can continue indefinitely. Let’s see how.

If only we were not to halt the expansions, i.e., if only we continue a bit further with the game, we could have just as well made one more expansion, and got to the following:

  • A: ((A is false) is false) is false.

The Truth-hood status of the immediately preceding expansion now is: false. Convince yourself that it is so. Hint: Always expand the inner-most parentheses first.

Homework 3: Convince yourself that what we get here is an indefinitely long alternating sequence of the Truth-hood statuses that: A is false, A is true, A is false, A is true

What can we say by way of a conclusion?

Conclusion: The truth-status of “A” is not uniquely decidable.

The emphasis is on the word “uniquely.”

We have used all the seemingly simple rules of logic, and yet have stumbled on to the result that, apparently, logic does not allow us to decide something uniquely or meaningfully.


Liar’s paradox and the set theory:

The importance of the liar paradox to our present concerns is this:

Godel himself believed, correctly, that the liar paradox was a semantic analogue to his Incompleteness Theorem [^].

Go read the Wiki article (or anything else on the topic) to understand why. For our purposes here, I will simply point out what the connection of the liar paradox is to the set theory, and then (more or less) call it a day. The key observation I want to make is the following:

You can think of every named statement as an instance of an ordered set.

What the above key observation does is to tie the symbolic logic of proposition with the set theory. We thus have three equivalent ways of describing the same idea: symbolic logic (name of a statement and its body), computer languages theory (non-terminals and their expansions to terminals), and set theory (the label of an ordered set and its enumeration).

As an aside, the set in question may have further properties, or further mathematical or logical structures and attributes embedded in itself. But at its minimal, we can say that the name of a named statement can be seen as a non-terminal, and the “body” of the statement (or the expansion rule) can be seen as an ordered set of some symbols—an arbitrarily specified sequence of some (zero or more) terminals and (zero or more) non-terminals.

Two clarifications:

  • Yes, in case there is no sequence in a production at all, it can be called the empty set.
  • When you have the same non-terminal on both sides of an expansion rule, it is said to form a recursion relation.

An aside: It might be fun to convince yourself that the liar paradox cannot be posed or discussed in terms of Venn’s diagram. The property of the “sheet” on which Venn’ diagram is drawn is, by some simple intuitive notions we all bring to bear on Venn’s diagram, cannot have a “recursion” relation.

Yes, the set theory itself was always “powerful” enough to allow for recursions. People like Godel merely made this feature explicit, and took full “advantage” of it.


Recursion, the continuum, and epistemological (and metaphysical) validity:

In our discussion above, I had merely asserted, without giving even a hint of a proof, that the three ways (viz., the symbolic logic of statements or  propositions, the computer languages theory, and the set theory) were all equivalent ways of expressing the same basic idea (i.e. the one which we are concerned about, here).

I will now once again make a few more observations, but without explaining them in detail or supplying even an indication of their proofs. The factoids I must point out are the following:

  • You can start with the natural numbers, and by using simple operations such as addition and its inverse, and multiplication and its inverse, you can reach the real number system. The generalization goes as: Natural to Whole to Integers to Rationals to Reals. Another name for the real number system is: the continuum.
  • You can use the computer languages theory to generate a machine representation for the natural numbers. You can also mechanize the addition etc. operations. Thus, you can “in principle” (i.e. with infinite time and infinite memory) represent the continuum in the CS terms.
  • Generating a machine representation for natural numbers requires the use of recursion.

Finally, a few words about epistemological (and metaphysical) validity.

  • The concepts of numbers (whether natural or real) have a logical precedence, i.e., they come first. The entire arithmetic and the calculus must come before does the computer-representation of some of their concepts.
  • A machine-representation (or, equivalently, a set-theoretic representation) is merely a representation. That is to say, it captures only some aspects or attributes of the actual concepts from maths (whether arithmetic or the continuum hypothesis). This issue is exactly like what we saw in the first and second posts in this series: a set is a concrete collection, unlike a concept which involves a consciously cast unit perspective.
  • If you try to translate the idea of recursion into the usual cognitive terms, you get absurdities such as: You can be your child, literally speaking. Not in the sense that using scientific advances in biology, you can create a clone of yourself and regard that clone to be both yourself and your child. No, not that way. Actually, such a clone is always your twin, not child, but still, the idea here is even worse. The idea here is you can literally father your own self.
  • Aristotle got it right. Look up the distinction between completed processes and the uncompleted ones. Metaphysically, only those objects or attributes can exist which correspond to completed mathematical processes. (Yes, as an extension, you can throw in the finite limiting values, too, provided they otherwise do mean something.)
  • Recursion by very definition involves not just absence of completion but the essence of the very inability to do so.

Closure on the “learnability issue”:

Homework 4: Go through the last two posts in this series as well as this one, and figure out that the only reason that the set theory allows a “recursive” relation is because a set is, by the design of the set theory, a concrete object whose definition does not have to involve an epistemologically valid process—a unit perspective as in a properly formed concept—and so, its name does not have to stand for an abstract mentally held unit. Call this happenstance “The Glaring Epistemological Flaw of the Set Theory” (or TGEFST for short).

Homework 5: Convince yourself that any lemma or theorem that makes use of Godel’s Incompleteness Theorem is necessarily based on TGEFST, and for the same reason, its truth-status is: it is not true. (In other words, any lemma or theorem based on Godel’s theorem is an invalid or untenable idea, i.e., essentially, a falsehood.)

Homework 6: Realize that the learnability issue, as discussed in Prof. Lev Reyzin’s news article (discussed in the first part of this series [^]), must be one that makes use of Godel’s Incompleteness Theorem. Then convince yourself that for precisely the same reason, it too must be untenable.

[Yes, Betteridge’s law [^] holds.]


Other remarks:

Remark 1:

As “asymptotical” pointed out at the relevant Reddit thread [^], the authors themselves say, in another paper posted at arXiv [^] that

While this case may not arise in practical ML applications, it does serve to show that the fundamental definitions of PAC learnability (in this case, their generalization to the EMX setting) is vulnerable in the sense of not being robust to changing the underlying set theoretical model.

What I now remark here is stronger. I am saying that it can be shown, on rigorously theoretical (epistemological) grounds, that the “learnability as undecidable” thesis by itself is, logically speaking, entirely and in principle untenable.

Remark 2:

Another point. My preceding conclusion does not mean that the work reported in the paper itself is, in all its aspects, completely worthless. For instance, it might perhaps come in handy while characterizing some tricky issues related to learnability. I certainly do admit of this possibility. (To give a vague analogy, this issue is something like running into a mathematically somewhat novel way into a known type of mathematical singularity, or so.) Of course, I am not competent enough to judge how valuable the work of the paper(s) might turn out to be, in the narrow technical contexts like that.

However, what I can, and will say is this: the result does not—and cannot—bring the very learnability of ANNs itself into doubt.


Phew! First, Panpsychiasm, and immediately then, Learnability and Godel. … I’ve had to deal with two untenable claims back to back here on this blog!

… My head aches….

… Code! I have to write some code! Or write some neat notes on ML in LaTeX. Only then will, I guess, my head stop aching so much…

Honestly, I just downloaded TensorFlow yesterday, and configured an environment for it in Anaconda. I am excited, and look forward to trying out some tutorials on it…

BTW, I also honestly hope that I don’t run into anything untenable, at least for a few weeks or so…

…BTW, I also feel like taking a break… May be I should go visit IIT Bombay or some place in konkan. … But there are money constraints… Anyway, bye, really, for now…


A song I like:

(Marathi) “hirvyaa hirvyaa rangaachi jhaaDee ghanadaaTa”
Music: Sooraj (the pen-name of “Shankar” from the Shankar-Jaikishan pair)
Lyrics: Ramesh Anavakar
Singers: Jaywant Kulkarni, Sharada


[Any editing would be minimal; guess I will not even note it down separately.] Did an extensive revision by 2019.01.21 23:13 IST. Now I will leave this post in the shape in which it is. Bye for now.

Learnability of machine learning is provably an undecidable?—part 2

Update on 23 January 2019, 17:55 IST:

In this series of posts, which was just a step further from the initial, brain-storming kind of a stage, I had come to the conclusion that based on certain epistemological (and metaphysical) considerations, Ben-David et al.’s conclusion (that learnability can be an undecidable) is logically untenable.

However, now, as explained here [^], I find that this particular conclusion which I drew, was erroneous. I now stand corrected, i.e., I now consider Ben-David et al.’s result to be plausible. Obviously, it merits a further, deeper, study.

However, even as acknowledging the above-mentioned mistake, let me also hasten to clarify that I still stick to my other positions, especially the central theme in this series of posts. The central theme here was that there are certain core features of the set theory which make implications such as Godel’s incompleteness theorems possible. These features (of the set theory) demonstrably carry a glaring epistemological flaw such that applying Godel’s theorem outside of its narrow technical scope in mathematics or computer science is not permissible. In particular, Godel’s incompleteness theorem does not apply to knowledge or its validation in the more general sense of these terms. This theme, I believe, continues to hold as is.

Update over.


In this post, we look into the differences of the idea of sets from that of concepts. The discussion here is exploratory, and hence, not very well isolated. There are overlaps of points between sections. Indeed, there are going to be overlaps of points from post to post too! The idea behind this series of posts is not to present a long thought out and matured point of view; it is much in the nature of jotting down salient points and trying to bring some initial structure to them. Thus the writing in this series is just a step further from the stage of brain-storming, really speaking.

There is no direct discussion in this post regarding the learnability issue at all. However, the points we note here are crucial to understanding Godel’s incompleteness theorem, and in that sense, the contents of this post are crucially important in framing the learnability issue right.

Anyway, let’s get going over the differences of sets and concepts.


A concept as an abstract unit of mental integration:

Concepts are mental abstractions. It is true that concepts, once formed, can themselves be regarded as mental units, and qua units, they can further be integrated together into even higher-level concepts, or possibly sub-divided into narrower concepts. However, regardless of the level of abstraction at which a given concept exists, the concretes being subsumed under it are necessarily required to be less abstract than the single mental unit that is the concept itself.

Using the terms of computer science, the “graph” of a concept and its associated concrete units is not only acyclic and directional (from the concretes to the higher-level mental abstraction that is the concept), its connections too can be drawn if and only if the concretes satisfy the rules of conceptual commensurability.

A concept is necessarily a mental abstraction, and as a unit of mental integration, it always exists at a higher level of abstraction as compared to the units it subsumes.


A set as a mathematical object that is just a concrete collection:

Sets, on the other hand, necessarily are just concrete objects in themselves, even if they do represent collections of other concrete objects. Sets take birth as concrete objects—i.e., as objects that don’t have to represent any act of mental isolation and integration—and they remain that way till the end of their life.

For the same reason, set theory carries absolutely no rules whereby constraints can be placed on combining sets. No meaning is supposed to be assigned to the very act of placing braces around the rule which defines admissibility of objects as members into a set (or that of enumeration of their member objects).

The act of creating the collection that is a set is formally allowed to proceed even in the absence of any preceding act of mental differentiations and integrations.

This distinction between these two ideas, the idea of a concept, and that of a set, is important to grasp.


An instance of a mental abstraction vs. a membership into a concrete collection:

In the last post in this series, I had used the terminology in a particular way: I had said that there is a concept “table,” and that there is a set of “tables.” The plural form for the idea of the set was not a typo; it was a deliberate device to highlight this same significant point, viz., the essential concreteness of any set.

The mathematical theory of sets didn’t have to be designed this way, but given the way it anyway has actually been designed, one of the inevitable implications of its conception—its very design—has been this difference which exists between the ideas of concepts and sets. Since this difference is extremely important, it may be worth our while to look at it from yet another viewpoint.

When we look at a table and, having already had reached the concept of “table” we affirm that the given concrete table in front of us is indeed a table, this seemingly simple and almost instantaneously completed act of recognition itself implicitly involves a complex mental process. The process includes invoking a previously generated mental integration—an integration which was, sometime in the past, performed in reference to those attributes which actually exist in reality and which make a concrete object a table. The process begins with the availability of this context as a pre-requisite, and now involves an application of the concept. It involves actively bringing forth the pre-existing mental integration, actively “see” that yet another concrete instance of a table does indeed in reality carry the attributes which make an object a table, and thereby concluding that it is a table.

In other words, if you put the concept table symbolically as:

table = { this table X, that table Y, now yet another table Z, … etc. }

then it is understood that what the symbol on the left hand side stands for is a mental integration, and that each of the concrete entities X, Y, Z, etc. appearing in the list on the right hand-side is, by itself, an instance corresponding to that unit of mental integration.

But if you interpret the same “equation” as one standing for the set “tables”, then strictly speaking, according to the actual formalism of the set theory itself (i.e., without bringing into the context any additional perspective which we by habit do, but sticking strictly only to the formalism), each of the X, Y, Z etc. objects remains just a concrete member of a merely concrete collection or aggregate that is the set. The mental integration which regards X, Y, Z as equally similar instances of the idea of “table” is missing altogether.

Thus, no idea of similarity (or of differences) among the members at all gets involved, because there is no mental abstraction: “table” in the first place. There are only concrete tables, and there is a well-specified but concrete object, a collective, which is only formally defined to be stand for this concrete collection (of those specified tables).

Grasp this difference, and the incompleteness paradox brought forth by Godel begins to dissolve away.


The idea of an infinite set cuts out the preceding theoretical context:

Since the aforementioned point is complex but important, there is no risk in repeating (though there could be boredom!):

There is no place-holder in the set theory which would be equivalent to saying: “being able to regard concretes as the units of an abstract, singular, mental perspective—a perspective reached in recognition of certain facts of reality.”

The way set theory progresses in this regard is indeed extreme. Here is one way to look at it.

The idea of an infinite set is altogether inconceivable before you first have grasped the concept of infinity. On the other hand, grasping the concept of infinity can be accomplished without any involvement of the set theory anyway—formally or informally. However, since every set you actually observe in the concrete reality can only be finite, and since sets themselves are concrete objects, there is no way to conceive of the very idea of an infinite sets, unless you already know what infinity means (at least in some working, implicit, sense). Thus, to generate the concrete members contained in the given infinite set, you of course need the conceptual knowledge of infinite sequences and series.

However, even if the set theory must use this theoretical apparatus of analysis, the actual mathematical object it ends up having still captures only the “concrete-collection” aspect of it—none other. In other words, the set theory drops from its very considerations some of the crucially important aspects of knowledge with which infinite sets can at all be conceived of. For instance, it drops the idea that the infinite set-generating rule is in itself an abstraction. The set theory asks you to supply and use that rule. The theory itself is merely content in being supplied some well-defined entities as the members of a set.

It is at places like this that the infamous incompleteness creeps into the theory—I mean, the theory of sets, not the theory that is the analysis as was historically formulated and practiced.


The name of a set vs. the word that stands for a concept:

The name given to a set (the symbol or label appearing on the left hand-side of the equation) is just an arbitrary and concrete a label; it is not a theoretical place-holder for the corresponding mental concept—not so long as you remain strictly within the formalism, and therefore, the scope of application of, the set theory.

When they introduce you to the set theory in your high-school, they take care to choose each of the examples only such a way that there always is an easy-to-invoke and well-defined concept; this per-existing concept can then be put into a 1:1 correspondence with the definition of that particular set.

But if you therefore begin thinking that there is a well-defined concept for each possible instance of a set, then such a characterization is only a figment of your own imagination. An idea like this is certainly not to be found in the actual formalism of the set theory.

Show me the place in the axioms, or their combinations, or theorems, or even just lemmas or definitions in the set theory where they say that the label for a set, or the rule for formation of a set, must always stand for a conceptually coherent mental integration. Such an idea is simply absent from the mathematical theory.

The designers of the set theory, to put it directly, simply didn’t have the wits to include such ideas in their theory.


Implications for the allowed operations:

The reason why the set theory allows for any arbitrary operands (including those which don’t make any sense in the real world) is, thus, not an accident. It is a direct consequence of the fact that sets are, by design, concrete aggregates, not mental integrations based on certain rules of cognition (which in turn must make a reference to the actual characteristics and attributes possessed by the actually existing objects).

Since sets are mere aggregations, not integrations, as a consequence, we no longer remain concerned with the fact that there have to be two or more common characteristics to the concrete objects being put together, or with the problem of having to pick up the most fundamental one among them.

When it comes to sets, there are no such constraints on the further manipulations. Thus arises the possibility of being apply any operator any which way you feel like on any given set.


Godel’s incompleteness theorem as merely a consequence:

Given such a nature of the set theory—its glaring epistemological flaws—something like Kurt Godel’s incompleteness theorem had to arrive in the scene, sooner or later. The theorem succeeds only because the set theory (on which it is based) does give it what it needs—viz., a loss of a connection between a word (a set label) and how it is meant to be used (the contexts in which it can be further used, and how).


In the next part, we will reiterate some of these points by looking at the issue of (i) systems of axioms based on the set theory on the one hand, and (ii) the actual conceptual body of knowledge that is arithmetic, on the other hand. We will recast the discussion so far in terms of the “is a” vs. the “has a” types of relationships. The “is a” relationship may be described as the “is an instance of a mental integration or concept of” relationship. The “has a” relationship may be described as “is (somehow) defined (in whatever way) to carry the given concrete” type of a relationship. If you are curious, here is the preview: concepts allow for both types of relationships to exist; however, for defining a concept, the “is an instance or unit of” relationship is crucially important. In contrast, the set theory requires and has the formal place for only the “has a” type of relationships. A necessary outcome is that each set itself must remain only a concrete collection.

 

Learnability of machine learning is provably an undecidable?—part 1

Update on 23 January 2019, 17:55 IST:

In this series of posts, which was just a step further from the initial, brain-storming kind of a stage, I had come to the conclusion that based on certain epistemological (and metaphysical) considerations, Ben-David et al.’s conclusion (that learnability can be an undecidable) is logically untenable.

However, now, as explained here [^], I find that this particular conclusion which I drew, was erroneous. I now stand corrected, i.e., I now consider Ben-David et al.’s result to be plausible. Obviously, it merits a further, deeper, study.

However, even as acknowledging the above-mentioned mistake, let me also hasten to clarify that I still stick to my other positions, especially the central theme in this series of posts. The central theme here was that there are certain core features of the set theory which make implications such as Godel’s incompleteness theorems possible. These features (of the set theory) demonstrably carry a glaring epistemological flaw such that applying Godel’s theorem outside of its narrow technical scope in mathematics or computer science is not permissible. In particular, Godel’s incompleteness theorem does not apply to knowledge or its validation in the more general sense of these terms. This theme, I believe, continues to hold as is.

Update over.


This one news story has been lying around for about a week on my Desktop:

Lev Reyzin, “Unprovability comes to machine learning,” Nature, vol. 65, pp. 166–167, 10 January 2019 [^]. PDF here: [^]

(I’ve forgotten how I came to know about it though.) The story talks about the following recent research paper:

Ben-David et al., “Learnability can be undecidable,” Nature Machine Intelligence, vol. 1, pp. 44–48, January 2019 [^]. PDF here: [^]

I don’t have the requisite background in the theory of the research paper itself, and so didn’t even try to read through it. However, I did give Reyzin’s news article a try. It was not very successful; I have not yet been able to finish this story yet. However, here are a few notings which I made as I tried to progress through this news story. The quotations here all come from from Reyzin’s news story.

Before we begin, take a moment to notice that the publisher here is arguably the most reputed one in science, viz., the Nature publishing group. As to the undecidability of learnability, its apparent implications for practical machine learning, artificial intelligence, etc., are too obvious to be pointed out separately.


“During the twentieth century, discoveries in mathematical logic revolutionized our understanding of the very foundations of mathematics. In 1931, the logician Kurt Godel showed that, in any system of axioms that is expressive enough to model arithmetic, some true statements will be unprovable.”

Is it because Godel [^] assumed that any system of axioms (which is expressive enough to model arithmetic) would be based on the standard (i.e. mathematical) set theory? If so, his conclusion would not be all that paradoxical, because the standard set theory carries, from an epistemological angle, certain ill-conceived notions at its core. [BTW, throughout this (short) series of posts, I use Ayn Rand’s epistemological theory; see ITOE, 2e [^][^].]


To understand my position (that the set theory is not epistemologically sound), start with a simple concept like “table”.

According to Ayn Rand’s ITOE, the concept “table” subsumes all possible concrete instances of tables, i.e., all the tables that conceivably exist, might have ever existed, and might ever exist in future, i.e., a potentially infinite number of concrete instances of them. Ditto, for any other concept, e.g., “chair.” Concepts are mental abstractions that stand for an infinite concretes of a given kind.

Now, let’s try to run away from philosophy, and thereby come to rest in the arms of, say, a mathematical logician like Kurt Godel [^], or preferably, his predecessors, those who designed the mathematical set theory [^].

The one (utterly obvious) way to capture the fact that there exist tables, but only using the actual terms of the set theory, is to say that there is a set called “tables,” and that its elements consist of all possible tables (i.e., all the tables that might have existed, might conceivably exist, and would ever conceivably exist in future). Thus, the notion again refers to an infinity of concretes. Put into the terms of the set theory, the set of tables is an infinite set.

OK, that seems to work. How about chairs? Once again, you set up a set, now called “chairs,” and proceed to dump within its braces every possible or conceivable chair.

So far, so good. No trouble until now.


The trouble begins when you start applying operators to the sets, say by combining them via unions, or by taking their intersections, and so on—all that Venn’s diagram business [^]. But what is the trouble with the good old Venn diagrams, you ask? Well, the trouble is not so much to the Venn diagrams as it is to the basic set theory itself:

The set theory makes the notion of the set so broad that it allows you to combine any sets in any which way you like, and still be able to call the result a meaningful set—meaningful, as seen strictly from within the set theory.

Here is an example. You can not only combine (take union of) “tables” and “chairs” into a broader set called “furniture,” you are also equally well allowed, by the formalism of the set theory, to absorb into the same set all unemployed but competent programmers, Indian HR managers, and venture capitalists from the San Francisco Bay Area. The set theory does not by itself have anything in its theoretical structure, formalism or even mathematical application repertoire, using which it could possibly so much as raise a finger in such matters. This is a fact. If in doubt, refer to the actual set theory ([^] and links therein), take it strictly on its own terms, in particular, desist mixing into it any extra interpretations brought in by you.

Epistemology, on the other hand, does have theoretical considerations, including explicitly formulated rules at its core, which together allow us to distinguish between proper and improper formulations of concepts. For example, there is a rule that the concrete instances being subsumed under a concept must themselves be conceptually commensurate, i.e., they must possess the same defining characteristics, even if possibly to differing degrees. Epistemology prevents the venture capitalists from the San Francisco Bay Area from being called pieces of furniture because it clarifies that they are people, whereas pieces of furniture are inanimate objects, and for this crucial reason, the two are conceptually incommensurate—they cannot be integrated together into a common concept.

To come back to the set theory, it, however, easily allows for every abstractly conceivable “combination” for every possible operand set(s). Whether the operation has any cognitive merit to it or not, whether it results into any meaningful at all or not, is not at all a consideration—not by the design of the set theory itself (which, many people suppose, is more fundamental to every other theory).

So—and get this right—calling the collection of QC scientists as either politicians or scoundrels is not at all an abuse of the mathematical structure, content, and meaning of the set theory. The ability to take an intersection of the set of all mathematicians who publish papers and the set of all morons is not a bug, it is very much a basic and core feature of the set theory. There is absolutely nothing in the theory itself which says that the intersection operator cannot be applied here, or that the resulting set has to be an empty set. None.

Set theory very much neglects the considerations of the kind of a label there is to a set, and the kind of elements which can be added to it.

More on this, later. (This post has already gone past 1000 words.)


The songs section will come at the conclusion of this (short) series of posts, to be completed soon enough; stay tuned…

A bit on Panpsychism—part 2: Why the idea is basically problematic, and what could be a different (and hopefully better) alternative

I continue from my last post. While the last post was fairly straight-forward, the subject-matter of this post itself is such that the writing becomes  meandering.


The basic trouble with panpsychism:

The primary referent for the concept of consciousness refers to one’s own consciousness. The existence of the same faculty in other beings is only an inference drawn from observations. If so, and in view of the two facts discussed in the last post, why can’t a similar inference be extended to everything material, too?

Well, consciousness is observed to exist only in those beings that are in fact alive. Consciousness is fundamental, sure. In Ayn Rand’s system, it even is a philosophical axiom. But qua a metaphysical existent, consciousness also happens to be only an attribute, and that too, of only one class of existents: the living beings.

Here, we will not get into the debate concerning which species can be taken as to be truly conscious, i.e., which species can be said to have an individualized, conscious grasp of reality. Personally, I believe that all living beings are conscious to some extent, even if it be only marginal in the more primitive species such as amoebae or plants.

However, regardless of whether plants can be taken to be conscious or not, we can always say that material entities that are not alive never show any evidence of being conscious. Your credit cards, spectacles, or T-shirts never show any evidence of being engaged in a process of grasping reality, or of having a definite, internal and individualized representation of any aspect of reality—no matter in how diluted, primitive or elementary form it may be posited to exist, or how fleetingly momentary such a grasp may be asserted to be. Consciousness is an attribute of only those beings that actually have life. You can’t tell your credit card to go have a life—it simply cannot. For the same reason, it can’t have the faculty to know anything, speaking literally.

Now, coming to the phenomenon of life, it is delimited on two different counts: (i) Life is an attribute possessed by only some beings in the universe, not all. (ii) Even those beings which are alive at some point of time must eventually die after the elapse of some finite period of time. When they do, their physical constituents are no different from the beings that never were alive in the first place. (This “forward-pass” kind of a logical flow is enough for us here; we need not look into the “backward-pass”, viz., the issue of whether life can arise out of the purely inanimate matter or not. It is a complicated question, and so, we will visit it some time later on.)

The physical constituents of a living organism continue to remain more or less the same after the event of its death. Even if we suppose that there is a permanent loss of some kind of a *physical* constituent or attribute at the time death, for our overall argument (concerning panpsychism) to progress, it is enough to observe and accept that at least **some** of the physical aspects continue to remain the same even after death. The continued existence of at least a part of physical constituents is sufficient to establish the following important conclusion:

Not all physical parts of the universe are at all times associated with living beings.

Given the above conclusion, it is easy to see that to speak of all parts of the reality as possessing consciousness is an elementary error: Not all parts of reality are alive at any point of time, and consciousness is an attribute of only those beings that are alive.


An aside related to reincarnation:

Even if reincarnation exists (and I do believe that it does), what persists in between two life-times is not consciousness, but only the soul.

In my view (derived from the ancient Indian traditions, of course, but also departing from it at places), the term “soul” is to be taken in sense of an individual (Sanskrit) “aatmaa.” An “aatmaa,” in my view is, loosely speaking, the “thing” which is neither created at birth nor destroyed at death. However, it is individual in nature, and remains in common across all the life-times of a given individual. Thus, I do not take the term “soul” in the sense in which Aristotle and Ayn Rand do. (For both Aristotle and Ayn Rand, the soul comes into being at birth, and ceases to exist at death.) Further, in my view, the soul has no consciousness—i.e., no feelings, not even just the desires even. For more details on my view of soul, see my earlier posts, especially these: [^][^][^].

The important point for our present discussion is this: Even if the soul were to be an attribute of all parts of the entire universe (including every inanimate objects contained in it), we still couldn’t ascribe consciousness to the inanimate parts of the universe. That is my main point here.


Another idea worth entertaining—but it is basically different from panpsychism:

Following the above-mentioned analysis, panpsychism can make sense only if what it calls “elements of consciousness” is something that is not in itself conscious, in any sense of the term.

The only idea consistent with its intended outcome can be something like a pre-consciousness, i.e., some feature or attribute or condition which, when combined with life, can give rise to a consciousness.

But note that such a pre-condition cannot mean having an actual capacity for being aware; it cannot represent the ability to have that individualized and internal grasp of reality which goes when actual living beings are actually conscious of something. That is the point to understand. The elements that panpsychism would like to have validated cannot be taken to be conscious the way it asserts they are. The elementary attributes cannot be conscious in the same sense in which we directly grasp our own consciousness, and also use it in our usual perceptions and mental functioning.

Even if you accept the more consistent idea (viz., a pre-conscious condition or a soul which may be associated with the non-living beings too), panpsychism would still have on its hands another problem to solve: if consciousness (or even just the pre-consciousness) is distributed throughout the universe, then for what reason does it get “concentrated” to such glaringly high degrees only in the living beings? For what metaphysical function? To allow for which teleological ends? And, following what kind of a process in particular? And then, what is the teleological or metaphysical function of the elements of consciousness?… From what I gather, they don’t seem to have very good ideas regarding questions and issues like these. In fact, I very much doubt if they at all have _any_ ideas in these respects.


Dr. Sabine Hossenfelder [^] notably does touch upon the animate vs. the inanimate distinction. Congratulations to her!

However, she doesn’t pursue it as much as she could have. Her main position—viz., that electrons don’t think—is reasonable, but as I will show below, this position is inevitable only when you stay within the scope of that abstraction which is the physical reality. Her argument does not become invalid, but it does become superfluous, when it comes to the entirety of existence as such (i.e., the whole universe, including all the living as well, apart from the non-living beings). To better put her position in context (as also those of others), let us perform a simple thought experiment.


The thought experiment to show why the panpsychism is basically a false idea:

Consider a cat kept in a closed wooden box. (Don’t worry; the sides of the box all carry holes, and so, the cat has no problem breathing in a normal way.) Administer some general anathesia to the cat, thereby letting her enter into a state of a kind of a deep sleep, being physically unresponsive—in particular, being unresponsive to the external physical stimuli like a simple motion of the box. Then place the cat in the wooden box, and tie its body to a fixed position using some comfortable harnesses.

If you now apply a gentle external force to the box from the outside, the cat-plus-box system can be easily described (or simulated) using physics; some simple dynamical evolution equations apply in this case. The reason is, even though the cat is a living being, the anaesthesia leads it to temporarily lose consciousness, so that nothing other than its purely physical attributes now enter the system description.

Now repeat the same experiment but when the cat is awake. As the box begins to move, the cat is sure to move its limbs and tail in response, or arch its body, etc. The *physical* attributes of her body enter the system description as before. However these physical attributes themselves are now under the influence of (or are a function of) an additional force—one which is introduced into the system description because of the actions of the consciousness of the cat. For instance, the physical attribute of any changes to the shape of its body are now governed not just by the externally applied forces, but also out of the forces generated by the cat itself, following the actions of her consciousness. (The idea of such an additional physical force is not originally mine; I got it from Dr. Harry Binswanger.) Thus, there are certain continuing physical conditions which depend on consciousness—its actions.

Can we rely on the principles or equations of physical evolution in the second case, too? Are our physical laws valid for describing the second case, too?

The answer is, yes. We can rely on the physics principles so long as we are able to bring the physical actions produced by the consciousness of the cat into our system description. We do so via that extra set of the continuing conditions. Let’s give this extra force the name: “life-physical force.”

Next, suppose the entire motion of this box+cat system occurs on a wooden table. The table (just as the wooden box) is not alive. Therefore, no special life-physical force comes into the picture while calculating the table’s actions. The table acts exactly the same way whether there is only a box, or a box with a non-responsive cat, or a box with a much meowing cat. It simply supplies reaction forces; it does not generate any active action forces.

Clearly, we can explain the actions of the table in purely physical terms. In fact doing so is relatively simpler, because we don’t have to abstract away its physical attributes the way we have to, when the object is a living and conscious being. Clearly, without any loss of generality, we can do away with panpsychism (in any of its versions) when it comes to describing the actions of the table.

Since panpsychism is a redundancy in describing the action of the table, obviously, it cannot apply to the universe as a whole. So, its basic idea is false.

Overall, my position is that panpsychism cannot be taken too seriously “as is”, because it does not discuss the intermediate aspect of life (or the distinction of living vs. non-living beings). It takes what is an attribute of only a part of the existence (the consciousnesses of all living beings), and then directly proceeds to smear it on to the entirety of existence as such. In terms of our thought experiment, it takes the consciousness of the cat and smears it onto not just the wooden box, but also onto the wooden table. But as can be seen with the thought-experiment, this is a big leap of mis-attribution. Yet a panpsychist must perform it, because an entire category of considerations is lacking in it—viz., that related to life.

What possibly would a panpsychist have to do to save his thesis? Let’s see.

Since consciousness metaphysically is only an attribute of a bigger class of entities (viz., that of living beings), the only way to rescue panpsychism would be to assert that the entire universe is always alive. This is the only way to have every part of the universe conscious.

But there are big troubles with such a “solution” too.

This formulation does away with the fact of death. If all beings are always alive, such a universe ceases to contain the fact of death. Thus, the new formulation would smear out the distinction between life and death, because it would have clubbed together both (i) the actions of life or of consciousness, and (ii) the actions of the inanimate matter, into a single, incoherent package—one that has no definition, no identity. That is the basic theoretical flaw of attempting the only way in which panpsychism could logically be saved.

Now, of course, since we have given a lifeline (pun intended) to the panpsychist, he could grab it and run with it with some further verbal gymnastics. He could possibly re-define the very life (i.e. living-ness) as a term that is not to be taken in the usual sense, but only in some basic, “elementary,” or “flavour”-some way. Possible… What would be wrong with that?

… The wrong thing is this: There are too many flavors now blurring out too many fundamental distinctions, but too few cogent definitions for all these new “concepts” of what it means to be a mere “flavour.”… Realize that the panpsychist would not be able to directly point out to a single instance of, say the table (or your T-shirt) as having some element of same kind of live which actually is present with the actual living beings.

If an alleged consciousness (or its elementary flavor or residue) cannot perform even a single action of distinguishing something consciously, but only follows the laws of physics in its actions, then what it possesses is not consciousness. Further, if an allegedly elementary form of life can have unconditional existence and never faces death, and leads to no actions other than those which follow from the laws of physics alone, then what it possesses is not life—not even in the elementary sense of the term.

In short, panpsychism is an untenable thesis.

Finally, let me reiterate that when I said that a pre-condition (or pre-consciousness, or “soul”) can remain associated with the inanimate matter too, that idea belongs to an entirely different class. It is not what panpsychists put forth.


Comments on what other bloggers have said, and a couple of relevant asides:

For the reasons discussed above, Motl[^]’s “proof” regarding panpsychism cannot be accepted as being valid—unless he, Koch, Chalmers, or others clarify what exactly they mean by terms such as “elementary” consciousness. Also, the elementary bits of “life”: can there be a \Phi of life too, and if yes, how does \Phi = 0 differ from ordinary loss of life (i.e. death) and the attendent loss of the \Phi of consciousness too.

As to Hossenfelder‘s post, if a given electron does not belong to the body of a conscious (living) being, then there exist no further complications in its physical evolution; the initial and boundary conditions specified in the purely physical terms are enough to describe its actions, its dynamical evolution, to the extent that such an evolution can at all be described using physics.

However, if an electron belongs to a conscious (living) being, then the entire of consideration of whether the electron by itself is conscious or not, whether it by itself thinks or not, becomes completely superfluous. The evolution of its motion now occurs under necessarily different conditions; you now have to bring the physical forces arising due to the action of life, of consciousness, via those additional continuing conditions. Given these additional forces, the system evolution once again follows the laws of physics. The reason for that, in turn, is this: whether an elementary particle like the electron itself is conscious or not, a big entity (like a man) surely is conscious, and the extra physical effects generated by this consciousness do have to be taken into account.

An aside: Philosophy of mind is not a handmaiden to physics or its philosophy:

While on this topic, realize that you don’t have to ascribe consciousness to the electrons of a conscious (living) being. For all you know, there could perhaps be an entirely new kind of a field (or a particle) which completely explains the phenomenon of consciousness, and so, electrons (or other particles of the standard model) can continue to remain completely inanimate at all times. We don’t know if such a field exists or not.

However, my main point here is that we don’t have to exhaust this question without observation; we don’t have to pre-empt this possibility by arbitrarily choosing to hinge the entire debate only on the particles of the standard model of physics, and slapping consciousness onto them.

Realize that the abstraction of consciousness (and all matters pertaining to it or preceding it, like the soul), is fundamentally “orthogonal” to the abstractions of physics, of physical reality. (Here, see my last post.) You don’t commit the error of taking a model (even the most comprehensive model) of physics, and implicitly ask philosophy of mind to restrict its scope to this model (which itself may get revised later on!) Physics might not be a handmaiden to philosophy, but neither is philosophy a handmaiden to physics.

Finally coming to Schlafly‘s post, he too touches upon Hossenfelder’s post, but he covers it from the advance viewpoints of free-will, mind-body connection, Galen’s argument etc.[^]. I won’t discuss his post or positions in detail here because these considerations indeed are much more complicated and advanced.

Another aside: How Galen’s argument involves a superfluous consideration:

However, one point that can be noted here is that Galen fails to make the distinction of whether the atom he considers exists as a part of a conscious (living) being’s body, or whether it is a part of some inanimate object. In the former case, whether the electron itself is conscious or not (and whether there is an extra particle or field of consciousness or not, and whether there is yet another field or particle to explain the phenomenon of life or not), a description of the physical evolution of the system would still have to include the aforementioned life-physical force. Thus, the issue of whether the electron is conscious or not is a superfluous consideration. In other words, Galen’s argument involves a non-essential consideration, and therefore, it is not potent enough to settle the related issues.


Homework for you:

  • If panpsychism were to be true, your credit card, spectacles, or T-shirt would be conscious in some “elementary” sense, and so, they would have to be able to hold some “elementary” items of cognition. The question is, where and through what means do you suppose it might be keeping it? That is to say, what are the physical (or physico-electro-chemical-etc.) correlates for their content of consciousness? For instance, can a tape-recorder be taken to be conscious? Can the recording on the tape be taken as the storage of its “knowledge”? If you answer “yes,” then extend the question to the tape of the tape-recorder. Can it be said to be conscious?
  • Can there be a form of consciousness which does not carry a sense of self even in the implicit terms? As it so actually happens, i.e., in reality, a conscious being doesn’t have to be able to isolate and consciously hold that it has self; but it only has to act with a sense of its own life, its own consciousness. The question asks whether, hypothetically, we can do away with that implicit sense of its own life and consciousness itself, or not.
  • Can there be a form of consciousness which comes without any mind-body integrating mechanisms such as some kinesthetic senses of feedback, including some emotions (perhaps even just so simple emotions such as the pleasure-pain mechanism)? Should there be medical specializations for addressing the mental health issues of tables? of electric switches? of computers?
  • Could, by any stretch of imagination, the elementary consciousness (as proposed by panpsychists) be volitional in nature?
  • Should there be a law to protect the rights of your credit card? of your spectacles? of your T-shirt? of a tape-recorder? of your laptop? of an artificial neural network running on your laptop?
  • To those who are knowledgeable about ancient Indian wisdom regarding the spiritual matters, and wish to trace panpsychism to it: If a “yogi” could do “tapascharyaa” even while existing only as an “aatmaa” i.e. even when he is not actually alive, then why should he at all have to take a birth? Why do they say that even “deva”s also have to take a human birth in order to break the bonds of “karma” and thereby attain spiritual purity?

More than three thousand words (!!) but sometimes it is necessary. In any case, I just wanted to finish off this topic so that I could return full-time to Data Science. (I will, however, try to avoid this big a post the next time; cf. my NYRs—2019 edition [^].)


A song I like:
(Marathi) “santha vaahate krushNaa maai”
Lyrics: Ga. Di. Madgulkar
Music: Datta Davajekar
Singer: Sudhir Phadke