Stay tuned to the NSF on the next evening…

Update on 2019.04.10 18:50 IST: 

Dimitrios Psaltis, University of Arizona in Tucson, EHT project scientist [^]:

The size and shape of the shadow matches the precise predictions of Einstein’s general theory of relativity, increasing our confidence in this century-old theory. Imaging a black hole is just the beginning of our effort to develop new tools that will enable us to interpret the massively complex data that nature gives us.”

Update over.


Stay tuned to the NSF on the next evening (on 10th April 2019 at 06:30 PM IST) for an announcement of astronomical proportions. Or so it is, I gather. See: “For Media” from NSF [^]. Another media advisory made by NSF roughly 9 days ago, i.e. on the Fool’s Day, here [^]. Their news “report”s [^].


No, I don’t understand the relativity theory. Not even the “special” one (when it’s taken outside of its context of the so-called “classical” electrodynamics)—let alone the “general” one. It’s not one of my fields of knowledge.

But if I had to bet my money then, based purely on my grasp of the sociological factors these days operative in science as practised in the Western world, then I would bet a good amount (even Indian Rs. 1,000/-) that the announcement would be just a further confirmation of Einstein’s theory of general relativity.

That’s how such things go, in the Western world, today.

In other words, I would be very, very, very surprised—I mean to say, about my grasp of the sociology of science in the Western world—if they found something (anything) going even apparently contrary to any one of the implications of any one of Einstein’s theories. Here, emphatically, his theory of the General Relativity.


That’s all for now, folks! Bye for now. Will update this post in a minor way when the facts are on the table.


TBD: The songs section. Will do that too, within the next 24 hours. That’s a promise. For sure. (Or, may be, right tonight, if a song nice enough to listen to, strikes me within the next half an hour or so… Bye, really, for now.)


A song I like:

(Hindi) “ek haseen shaam ko, dil meraa kho_ gayaa…”
Lyrics: Raajaa Mehdi Ali Khaan
Music: Madan Mohan
Singer: Mohammad Rafi [Some beautiful singing here…]

 

 

 

Advertisements

Would it happen to me, too? …Also, other interesting stories / links

1. Would it happen to me, too?

“My Grandfather Thought He Solved a Cosmic Mystery,”

reports Veronique Greenwood for The Atlantic [^] [h/t the CalTech physicist Sean Carroll’s twitter feed]. The story has the subtitle:

“His career as an eminent physicist was derailed by an obsession. Was he a genius or a crackpot?”

If you visit the URL for this story, the actual HTML page which loads into your browser has another title, similar to the one above:

“Science Is Full of Mavericks Like My Grandfather. But Was His Physics Theory Right?”

Hmmm…. I immediately got interested. After all, I do work also on foundations of quantum mechanics. … “Will it happpen to me, too?” I thought.

At this point, you should really go through Greenwood’s article, and continue reading here only after you have finished reading it.


Any one who has worked on any conceptually new approach would find something in Greenwood’s article that resonates with him.

As to me, well, right at the time that attempts were being made to find examiners for my PhD, my guide (and even I) had heard a lot of people say very similar things as Greenwood now reports: “I don’t understand what you are saying, so please excuse me.” This, when I thought that my argument should be accessible even to an undergraduate in engineering!

And now that I continue working on the foundations of QM, having developed a further, completely new (and more comprehensive) approach, naturally, Greenwood’s article got me thinking: “Would it happen to me, too? Once again? What if it does?”


…Naah, it wouldn’t happen to me—that was my conclusion. Not even if I continue talking about, you know, QM!


But why wouldn’t something similar happen to me? Especially given the fact that a good part of it has already happened to me in the past?

The reason, in essence, is simple.

I am not just a physicist—not primarily, anyway. I am primarily an engineer, a computational modeller. That’s why, things are going to work out in a different way for me.

As to my past experience: Well, I still earned my PhD degree. And with it, the most critical part of the battle is already behind me. There is a lot of resistance to your acceptance before you have a PhD. Things do become a lot easier once you have gone successfully past it. That’s another reason why things are going to work out in a different way now. … Let me explain in detail.


I mean to say, suppose that I have a brand-new approach for resolving all the essential quantum mechanical riddles. [I think I actually do!]

Suppose that I try to arrange for a seminar to be delivered by me to a few physics professors and students, say at an IIT, IISER, or so. [I actually did!]

Suppose that they don’t respond very favorably or very enthusiastically. Suppose they are outright skeptical when I say that in principle, it is possible to think of a classical mechanically functioning analog simulator which essentially exhibits all the essential quantum mechanical features. Suppose that they get stuck right at that point—may be because they honestly and sincerely believe that no classical system can ever simulate the very quantum-ness of QM. And so, short of calling me a crack-pot or so, they just directly (almost sternly) issue the warning that there are a lot of arguments against a classical system reproducing the quantum features. [That’s what has actually happened; that’s what one of the physics professors I contacted wrote back to me.]

Suppose, then, that I send an abstract to an international conference or so. [This too has actually happend, too, recently.]

Suppose that, in the near future, the conference organizers too decline my submission. [In actual reality, I still don’t know anything about the status of my submission. It was in my routine searches that I came across this conference, and noticed that I did have about 4–5 hours’ time to meet the abstracts submissions deadline. I managed to submit my abstract within time. But since then, the conference Web site has not got updated. There is no indication from the organizers as to when the acceptance or rejection of the submitted abstracts would be communicated to the authors. An enquiry email I wrote to the organizers has gone unanswered for more than a week by now. Thus, the matter is still open. But, just for the sake of the argument, suppose that they end up rejecting my abstract. Suppose that’s what actually happens.]

So what?

Since I am not a physicist “proper”, it wouldn’t affect me the way it might have, if I were to be one.

… And, that way, I could even say that I am far too smart to let something like that (I mean some deep disappointment or something like that) happen to me! … No, seriously! Let me show you how.

Suppose that the abstract I sent to an upcoming conference was written in theoretical/conceptual terms. [In actual reality, it was.]

Suppose now that it therefore gets rejected.

So what?

I would simply build a computational model based on my ideas. … Here, remember, I have already begun “talking things” about it [^]. No one has come up with a strong objection so far. (May be because they know the sort of a guy I am.)

So, if my proposed abstract gets rejected, what I would do is to simply go ahead and perform a computer simulation of a classical system of this sort (one which, in turn, simulates the QM phenomena). I might even publish a paper or two about it—putting the whole thing in purely classical terms, so that I manage to get it published. (Before doing that, I might even discuss the technical issues involved on blogs, possibly even at iMechanica!)

After such a paper (ostensibly only on the classical mechanics) gets accepted and published, I will simply write a blog post, either here or at iMechanica, noting how that system actually simulates the so-and-so quantum mechanical feature. … Then, I would perform another simulation—say using DFT. (And it is mainly for DFT that I would need help from iMechanicians or so.) After it too gets accepted and published, I will write yet another blog post, explaining how it does show some quantum mechanical-ness. … Who knows such a sequence could continue…

But such a series (of the simulations) wouldn’t be very long, either! The thing is this.

If your idea does indeed simplify certain matters, then you don’t have to argue a lot about it—people can see its truth real fast. Especially if it has to do with “hard” sciences like engineering—even physics!

If your basic idea itself isn’t so good, then, putting it in the engineering terms makes it more likely that even if you fail to get the weakness of your theory, someone else would. All in all, well and good for you.

As to the other possibility, namely, if your idea is good, but, despite putting it in the simpler terms (say in engineering or simulation terms), people still fail to see it, then, well, so long as your job (or money-making potential) itself is not endangered, then I think that it is a good policy to leave the mankind to its own follies. It is not your job to save the world, said Ayn Rand. Here, I believe her. (In fact, I believed in this insight even before I had ever run into Ayn Rand.)


As to the philosophic issues such as those involved in the foundations of QM—well, these are best tackled philosophically, not physics-wise. I wouldn’t use a physics-based argument to take a philosophic argument forward. Neither would I use a philosophical argument to take a physics-argument forward. The concerns and the methods of each are distinctly different, I have come to learn over a period of years.

Yes, you can use a physics situation as being illustrative of a philosophic point. But an illustration is not an argument; it is merely a device to make understanding easier. Similarly, you could try to invoke a philosophic point (say an epistemological point) to win a physics-based argument. But your effort would be futile. Philosophic ideas are so abstract that they can often be made to fit several different, competing, physics-related arguments. I would try to avoid both these errors.

But yes, as a matter of fact, certain issues that can only be described as philosophic ones, do happen to get involved when it comes to the area of the foundations of QM.

Now, here, given the nature of philosophy, and of its typical practitioners today (including those physicists who do dabble in philosophy), even if I become satisfied that I have resolved all the essential QM riddles, I still wouldn’t expect these philosophers to accept my ideas—not immediately anyway. In fact, as I anticipate things, philosophers, taken as a group, would never come to accept my position, I think. Such an happenstance is not necessarily to be ascribed to the personal failings of the individual philosophers (even if a lot of them actually do happen to be world-class stupid). That’s just how philosophy (as a discipline of studies) itself is like. A philosophy is a comprehensive view of existence—whether realistic or otherwise. That’s why it’s futile to expect that all of the philosophers would come to agree with you!

But yes, I would expect them to get the essence of my argument. And, many of them would, actually, get my argument, its logic—this part, I am quite sure of. But just the fact that they do understand my argument would not necessarily lead them to accept my positions, especially the idea that all the QM riddles are thereby resolved. That’s what I think.


Similarly, there also are a lot of mathematicians who dabble in the area of foundations of QM. What I said for philosophers also applies more or less equally well to them. They too would get my ideas immediately. But they too wouldn’t, therefore, come to accept my positions. Not immediately anyway. And in all probability, never ever in my lifetime or theirs.


So, there. Since I don’t expect an overwhelming acceptance of my ideas in the first place, there isn’t going to be any great disappointment either. The very expectations do differ.

Further, I must say this: I would never ever be able to rely on a purely abstract argument. That would feel like too dicey or flimsy to me. I would have to offer my arguments in terms of physically existing things, even if of a brand new kind. And, machines built out of them. At least, some working simulations. I would have to have these. I would not be able to rest on an abstract argument alone. To be satisfactory to me, I would have to actually build a machine—a soft machine—that works. And, doing just this part itself is going to be far more than enough to keep me happy. They don’t have to accept the conceptual arguments or the theory that goes with the design of such (soft) machines. It is enough that I play with my toys. And that’s another reason why I am not likely to derive a very deep sense of disenchantment or disappointment.


But if you ask me, the way I really, really like think about it is this:

If they decline my submission to the conference, I will write a paper about it, and send it, may be, to Sean Carroll or Sabine Hosenfelder or so. … The way I imagine things, he is then going to immediately translate my paper into German, add his own name to ensure its timely publication, and … . OK, you get the idea.

[In the interests of making this post completely idiot-proof, let me add: Here, in this sub-section, I was just kidding.]


2. The problem with the Many Worlds:

“Why the Many Worlds interpretation has many problems.”

Philip Ball argues in an article for the Quanta Mag [^] to the effect that many worlds means no world at all.

No, this is not exactly what he says. But what he says is clear enough that it is this conclusion which becomes inescapable.

As to what he actually says: Well, here is a passage, for instance:

“My own view is that the problems with the MWI are overwhelming—not because they show it must be wrong, but because they render it incoherent. It simply cannot be articulated meaningfully.”

In other words, Ball’s actual position is on the epistemic side, not on the ontic. However, his arguments are clear enough (and they often enough touch on issues that are fundamental enough) that the ontological implications of what he actually says, also become inescapable. OK, sometimes, the article unnecessarily takes detours into non-essentials, even into something like polemics. Still, overall, the write up is very good. Recommended very strongly.

Homework for you: If the Many Worlds idea is that bad, then explain why it might be that many otherwise reasonable people (for instance, Sean Carroll) do find the Many Worlds approach attractive. [No cheating. Think on your own and write. But if cheating is what you must do, then check out my past comment at some blog—I no longer remember where I wrote it, but probably it was on Roger Schlafly’s blog. My comment had tackled precisely this latter issue, in essential terms. Hints for your search: My comment had spoken about data structures like call-stacks and trees, and their unfolding.]


3. QM as an embarrassment to science:

“Why quantum mechanics is an “embarrassment” to science”

Brad Plumer in his brief note at the Washington Post [^] provides a link to a video by Sean Carroll.

Carroll is an effective communicator.

[Yes, he is the same one who I imagine is going to translate my article into German and… [Once again, to make this post idiot-proof: I was just kidding.]]


4. Growing younger…

I happened to take up a re-reading of David Ruelle’s book: “Chance and Chaos”. The last time I read it was in the early 1990s.

I felt younger! … May be if something strikes me while I am going through it after a gap of decades, I will come back and note it here.


5. Good introductory resources on nonlinear dynamics, catastrophe theory, and chaos theory:

If you are interested in the area of nonlinear dynamics, catastrophe theory and chaos theory, here are a few great resources:

  • For a long time, the best introduction to the topic was a brief write-up by Prof. Harrison of UToronto; it still remains one of the best [^].
  • Prof. Zeeman’s 1976 article for SciAm on the catastrophe theory is a classic. Prof. Zhigang Suo (of Harvard) has written a blog post of title “Recipe for catastrophe”at iMechanica [^], in which he helpfully provides a copy of Zeeman’s article. I have strongly recommended Zeeman’s write-up before, and I strongly recommend it once again. Go through it even if only to learn how to write for the layman and still not lose precision or quality.
  • As to a more recent introductory expositions, do see Prof. Geoff Boeing’s blog post: “Chaos theory and the logistic map” [^]. Boeing is a professor of urban planning, and not of engineering, physics, CS, or maths. But it is he who gives the clearest idea about the distinction between randomness and chaos that I have ever run into. (However, I only later gathered that he does have a UG in CS, and a PG in Information Management.) Easy to understand. Well ordered. Overall, very highly recommended.

Apart from it all:

Happy Diwali!


A song I like:

(Hindi) “tere humsafar geet hai tere…”
Music: R. D. Burman
Singers: Kishore Kumar, Mukesh, Asha Bhosale
Lyrics: Majrooh Sultanpuri

[Has this song been lifted from some Western song? At least inspired from one?

Here are the reasons for this suspicion: (1) It has a Western-sounding tune. It doesn’t sound Indian. There is no obvious basis either in the “raag-daari,” or in the Indian folk music. (ii) There are (beautiful) changes in the chords here. But there is no concept of chords in the traditional Indian music—basically, there is no concept of harmony in it, only of melody. (iii) Presence of “yoddling” (if that’s the right word for it). That too, by a female singer. That too, in the early 1970’s! Despite all  the “taan”s and “firat”s and all that, this sort of a thing (let’s call it yoddling) has never been a part of the traditional Indian music.

Chances are good that some of the notes were (perhaps very subconsciously) inspired from a Western tune. For instance, I can faintly hear “jingle bells” in the refrain. … But the question is: is there a more direct correspondence to a Western tune, or not.

And, if it was not lifted or inspired from a Western song, then it’s nothing but a work of an absolute genius. RD anyway was one—whether this particular song was inspired from some other song, or not.

But yes, I liked this song a great deal as a school-boy. It happened to strike me once again only recently (within the last couple of weeks or so). I found that I still love it just as much, if not more.]


[As usual, may be I will come back tomorrow or so, and edit/streamline this post a bit. One update done on 2018.11.04 08:26 IST. A second update done on 2018.11.04 21:01 IST. I will now leave this post in whatever shape it is in. Got to move on to trying out a few things in Python and all. Will keep you informed, probably after Diwali. In the meanwhile, take care and bye for now…]

Caste Brahmins, classification, and ANN

1. Caste Brahmins:

First, a clarification: No, I was not born in any one of the Brahmin castes, particularly, not at all in the Konkanastha Brahmins’ caste.

Second, a suggestion: Check out how many caste-Brahmins have made it to the top in the Indian and American IT industry, and what sort of money they have made—already.

No, really.

If you at all bother visiting this blog, then I do want you to take a very serious note of both these matters.

No. You don’t have to visit this blog. But, yes, if you are going to visit this blog, to repeat, I do want you to take  matters like these seriously.

Some time ago, perhaps a year ago or so, a certain caste-Brahmin in Pune from some place (but he didn’t reveal his shakha, sub-caste, gotra, pravar, etc.) had insulted me, while maintaining a perfectly cool demeanor for himself, saying how he had made so much more money than me. Point taken.

But my other caste-Brahmin “friends” kept quiet at that time; not a single soul from them interjected.

In my off-the-cuff replies, I didn’t raise this point (viz., why these other caste-Brahmins were keeping quiet), but I am sure that if I were to do that, then, their typical refrain would have been (Marathi) “tu kaa chiDatos evhaDa, to tar majene bolat hotaa.” … English translation: Why do you get so angry? He was just joking.

Note the usual caste-Brahmin trick: they skillfully insert an unjustified premise; here, that you are angry!

To be blind to the actual emotional states or reactions of the next person, if he comes from some other caste, is a caste-habit with the caste-Brahmins. The whole IT industry is full of them—whether here in India, or there in USA/UK/elsewhere.

And then, today, another Brahmin—a Konkanastha—insulted me. Knowing that I am single, he asked me if I for today had taken the charge of the kitchen, and then, proceeded to invite my father to a Ganesh Pooja—with all the outward signs of respect being duly shown to my father.


Well, coming back to the point which was really taken:

Why have caste-Brahmins made so much money—to the point that they in one generation have begun very casually insulting the “other” people, including people of my achievements?

Or has it been the case that the people of the Brahmin castes always were this third-class, in terms of their culturally induced convictions, but that we did not come to know of it from our childhood, because the elderly people around us kept such matters, such motivations, hidden from us? May be in the naive hope that we would thereby not get influenced in a bad manner? Possible.

And, of course, how come these caste-Brahmins have managed to attract as much money as they did (salaries in excess of Rs. 50 lakhs being averagely normal in Pune) even as I was consigned only to receive “attract” psychic attacks (mainly from abroad) and insults (mainly from those from this land) during the same time period?

Despite all my achievements?

Do take matters like these seriously, but, of course, as you must have gathered by now, that is not the only thing I would have, to talk about. And, the title of this post anyway makes this part amply clear.


2. The classification problem and the ANNs:

I have begun my studies of the artificial neural networks (ANNs for short). I have rapidly browsed through a lot of introductory articles (as also the beginning chapters of books) on the topic. (Yes, including those written by Indians who were born in the Brahmin castes.) I might have gone through 10+ such introductions. Many of these, I had browsed through a few years ago (I mean only the introductory parts). But this time round, of course, I picked them up for a more careful consideration.

And soon enough (i.e. over just the last 2–3 days), I realized that no one in the field (AI/ML) was talking about a good explanation of this question:

Why is it that the ANN really succeeds as well as it does, when it comes to the classification tasks, but not others?

If you are not familiar with Data Science, then let me note that it is known that ANN does not do well on all the AI tasks. It does well only on one kind of them, viz., the classification tasks. … Any time you mention the more general term Artificial Intelligence, the layman is likely to think of the ANN diagram. However, ANNs are just one type of a tool that the Data Scientist may use.

But the question here is this: why does the ANN do so well on these tasks?

I formulated this question, and then found an answer too, and I would sure like to share it with you (whether the answer I found is correct or not). However, before sharing my answer, I want you to give it a try.

It would be OK by me if you answer this question in reference to just one or two concrete classification tasks—whichever you find convenient. For instance, if you pick up OCR (optical character recognition, e.g., as explained in Michael Nielson’s free online book [^]), then you have to explain why an ANN-based OCR algorithm works in classifying those MNIST digits / alphabets.


Hint: Studies of Vedic literature won’t help. [I should know!] OTOH, studies of good books on epistemology, or even just good accounts covering methods of science, should certainly come in handy.

I will give you all some time before I come back on that question.

In the meanwhile, have fun—if you wish to, and of course, if you are able to. With questions of this kind. (Translating the emphasis in the italics into chaste Marathi: “laayaki asali tar.” Got it?)


A song I like:
(Marathi) “ooncha nicha kaahi neNe bhagawant”
Lyrics: Sant Tukaram
Music and Singer: Snehal Bhatkar

 

Absolutely Random Notings on QM—Part 2: LOL!

I intend to aperiodically update this post whenever I run into the more “interesting” write-ups about QM and/or quantum physicists. Accordingly, I will mention the dates on which I update this post.

I will return back to Heisenberg and Schrodinger in the next part of this series. But in the meanwhile, enjoy the “inaugaral” link below.


1. Post first published on 08 July 2018, 13:28 hrs IST with the following “interesting” write-up:

Wiki on “Fundamental Fysiks [sic] Group”: [^]


A Song I Like:

(English, “Western”): “old turkey buzzard…” from the movie “MacKenna’s Gold”
[I here mostly copy-paste, dear gentlemen, for, while I had enjoyed the song especially during the usual turbulent teens, I have not had the pleasure to locate the source of the same–back then, or ever. Hence relying on the ‘net.[Oh, BTW, it requires another post on the movie itself, though! [Just remind me, that’s all!]]]
Music: Quincy Jones
Lyrics: Freddy Douglass
Singer: Jose Feliciano

 

 

Absolutely Random Notings on QM—Part 1: Bohr. And, a bad philosophy making its way into physics with his work, and his academic influence

TL;DR: Go—and keep—away.


I am still firming up my opinions. However, there is never a harm in launching yet another series of posts on a personal blog, is there? So here we go…


Quantum Mechanics began with Planck. But there was no theory of quanta in what Planck had offered.

What Planck had done was to postulate only the existence of the quanta of the energy, in the cavity radiation.

Einstein used this idea to predict the heat capacities of solids—a remarkable work, one that remains underappreciated in both text-books as well as popular science books on QM.

The first pretense at a quantum theory proper came from Bohr.


Bohr was thinking not about the cavity radiations, but about the spectra of the radiations emitted or absorbed by gases.

Matter, esp. gases, following Dalton, …, Einstein, and Perin, were made of distinct atoms. The properties of gases—especially the reason why they emitted or absorbed radiation only at certain distinct frequencies, but not at any other frequencies (including those continuous patches of frequencies in between the experimentally evident sharp peaks)—had to be explained in reference to what the atoms themselves were like. There was no other way out—not yet, not given the sound epistemology in physics of those days.

Thinking up a new universe still was not allowed back then in science let alone in physics. One still had to clearly think about explaining what was given in observations, what was in evidence. Effects still had be related back to causes; outward actions still had to be related back to the character/nature of the entities that thus acted.

The actor, unquestionably by now, was the atom. The effects were the discrete spectra. Not much else was known.

Those were the days were when the best hotels and restaurants in Berlin, London, and New York would have horse-driven buggies ushering in the socially important guests. Buggies still was the latest technology back then. Not many people thus ushered in are remembered today. But Bohr is.


If the atom was the actor, and the effects under study were the discrete spectra, then what was needed to be said, in theory, was something regarding the structure of the atom.

If an imagined entity sheer by its material/chemical type doesn’t do it, then it’s the structure—its shape and size—which must do it.

Back then, this still was regarded as one of the cardinal principles of science, unlike the mindless opposition to the science of Homeopathy today, esp. in the UK. But back then, it was known that one important reason that Calvin gets harassed by the school bully was that not just the sheer size of the latter’s matter but also that the structure of the latter was different. In other words: If you consumed alcohol, you simply didn’t take in so many atoms of carbon as in proportion to so many atoms of hydrogen, etc. You took in a structure, a configuration with which these atoms came in.


However, the trouble back then was, none had have the means to see the atoms.

If by structure you mean the geometrical shape and size, or some patterns of density, then clearly, there was no experimental observations pertaining to the same. The only relevant observation available to people back then was what had already been encapsulated in Rutherford’s model, viz., the incontestable idea that the atomic nucleus had to be massive and dense, occupying a very small space as compared to an atom taken as a whole; the electrons had to carry very little mass in comparison. (The contrast of Rutherford’s model of c. 1911 was to the earlier plum cake model by Thomson.)

Bohr would, therefore, have to start with Rutherford’s model of atoms, and invent some new ideas concerning it, and see if his model was consistent with the known results given by spectroscopic observations.

What Bohr offered was a model for the electrons contained in a nuclear atom.


However, even while differing from the Rutherford’s plum-cake model, Bohr’s model emphatically lacked a theory for the nature of the electrons themselves. This part has been kept underappreciated by the textbook authors and science teachers.

In particular, Bohr’s theory had absolutely no clue as to the process according to which the electrons could, and must, jump in between their stable orbits.


The meat of the matter was worse, far worse: Bohr had explicitly prohibited from pursuing any mechanism or explanation concerning the quantum jumps—an idea which he was the first to propose. [I don’t know of any one else originally but independently proposing the same idea.]

Bohr achieved this objective not through any deployment of the best possible levels of scientific reason but out of his philosophic convictions—the convictions of the more irrational kind. The quantum jumps were obviously not observable, according to him, only their effects were. So, strictly speaking, the quantum jumps couldn’t possibly be a part of his theory—plain and simple!

But then, Bohr in his philosophic enthusiasm didn’t stop just there. He went even further—much further. He fully deployed the powers of his explicit reasoning as well as the weight of his seniority in prohibiting the young physicists from even thinking of—let alone ideating or offering—any mechanism for such quantum jumps.

In other words, Bohr took special efforts to keep the young quantum enthusiasts absolutely and in principle clueless, as far as his quantum jumps were concerned.


Bohr’s theory, in a sense, was in line with the strictest demands of the philosophy of empiricism. Here is how Bohr’s application of this philosophy went:

  1. This electron—it can be measured!—at this energy level, now!
  2. [May be] The same electron, but this energy level, now!
  3. This energy difference, this frequency. Measured! [Thank you experimental spectroscopists; hats off to you, for, you leave Bohr alone!!]
  4. OK. Now, put the above three into a cohesive “theory.” And, BTW, don’t you ever even try to think about anything else!!

Continuing just a bit on the same lines, Bohr sure would have said (quoting Peikoff’s explanation of the philosophy of empiricism):

  1. [Looking at a tomato] We can only say this much in theory: “This, now, tomato!”
  2. Making a leeway for the most ambitious ones of the ilk: “This *red* tomato!!”

Going by his explicit philosophic convictions, it must have been a height of “speculation” for Bohr to mumble something—anything—about a thing like “orbit.” After all, even by just mentioning a word like “orbit,” Bohr was being absolutely philosophically inconsistent here. Dear reader, observe that the orbit itself never at all was an observable!

Bohr must have in his conscience convulsed at this fact; his own philosophy couldn’t possibly have, strictly speaking, permitted him to accommodate into his theory a non-measurable feature of a non-measurable entity—such as his orbits of his electrons. Only the allure of outwardly producing predictions that matched with the experiment might have quietened his conscience—and that too, temporarily. At least until he got a new stone-building housing an Institute for himself and/or a Physics Nobel, that is.

Possible. With Herr Herr Herr Doktor Doktor Doktor Professor Professors, anything is possible.


It is often remarked that the one curious feature of the Bohr theory was the fact that the stability of the electronic orbits was postulated in it, not explained.

That is, not explained in reference to any known physical principle. The analogy to the solar system indeed was just that: an analogy. It was not a reference to an established physical principle.

However, the basically marvelous feature of the Bohr theory was not that the orbits were stable (in violation of the known laws of electrodynamics). It was: there at all were any orbits in it, even if no experiment had ever given any evidence for the continuously or discontinuously subsequent positions electrons within an atom or of their motions.

So much for originator of the cult of sticking only to the “observables.”


What Sommerfeld did was to add footnotes to Bohr’s work.

Sommerfeld did this work admirably well.

However, what this instance in the history of physics clearly demonstrates is yet another principle from the epistemology of physics: how a man of otherwise enormous mathematical abilities and training (and an academically influential position, I might add), but having evidently no remarkable capacity for a very novel, breakthrough kind of conceptual thinking, just cannot but fall short of making any lasting contributions to physics.

“Math” by itself simply isn’t enough for physics.

What came to be known as the old quantum theory, thus, faced an impasse.

Under Bohr’s (and philosophers’) loving tutorship, the situation continued for a long time—for more than a decade!


A Song I Like:

(Marathi) “sakhi ga murali mohan mohi manaa…”
Music: Hridaynath Mangeshkar
Singer: Asha Bhosale
Lyrics: P. Savalaram


PS: Only typos and animals of the similar ilk remain to be corrected.