The Mechanical-vs-Metallurgy “Branch-Jumping” Issue—Part II: Not Attending Inter-/Multi-/Trans-Disciplinary Conferences

0. To know the context and the primary intended readership of this post, please see my earlier post in this series, here: [^]. Of course, as mentioned earlier, everyone else is welcome to read this series, too.

1. The 57th (annual) Congress of the Indian Society of Theoretical and Applied Mechanics (An International Meet) was held at Pune this week, from 17th through 20th December, 2012 [^]. The venue was the Defence Institute of Advanced Technology (now a deemed university) [^]. (Caveat: Their Web site is often down, and with the PDF documents almost always missing. For example, try to download their faculty recruitment form.) I attended it, but this time round, without presenting any paper.

2. The conference was inaugurated by Dr. V. K. Saraswat [^], himself a PhD in combustion engineering. [Yes, the stupid primary intended readership [see part I to know exactly who all], this too is a topic common to both metallurgy and mechanical engineering.] The inaugural and valedictory functions were presided over by Dr. Prahlada [^], the vice-chancellor of the host institute (DIAT).

3. Some 180 papers were presented in the parallel sessions, many of them of multi-/trans-/inter-disciplinary nature, and with their authors coming from almost all departments of science and engineering. Even including electronics engineering, and mining engineering, apart from, of course, the usual ones: applied mechanics, mechanical engg., aerospace engg., civil engg., metallurgical/materials engg., mathematics, physics and astrophysics.

4. Even going just by my personal informal observations, people came to this conference from a lot of places: Guwahati, Kharagpur, Coimbatore, Kanpur, Chennai, Bangalore, Visakhapattanam, Hyderabad, Gulbarga, Surat, Mumbai, etc.

The foreign participation was somewhat limited this time round, with just a couple of Americans (both of Indian origin, both well-honored HoDs of mechanical or mechanics departments), and, off-hand, I suppose, one or two leading researchers or professors each from Canada, Germany, Israel, Japan, Taiwan, etc.

But, come, they did.

In contrast, the IIT Bombay QIP PhD D. W. Pande (of mechanical engineering branch from Aurangabad, now lording over at COEP); the meteorology (?) PhD degree holder G. B. Pant (sitting on the board of governors of COEP [a new addition to the stupid intended readership that should have been effected right the last time, and I will explain the reason for his inclusion the next time]); the Dean of the Faculty of Engineering of the University of Pune, PhD degree holder Gajanan Kharate (from Amaravati, now lording over at Pune, and per government, perhaps an OBC); his PhD guide the IIT Bombay QIP PhD Ashok A. Ghatol (formerly, Director, COEP, per government, certainly an OBC) did not come. Neither any of the others of their ilk.

Not even if they all are employed, and even if the places of their employment are all in or around Pune, and the conference was held right in Pune. [And that being academics, they would get discounts for the conference registration fees, and being government/university employed etc., they would get the conference fee refunded back anyway. Unlike me, who borrowed Rs. 3,500/- to attend it. Despite all that discount and its refunds, these characters still did not attend.]

And, of course, they didn’t send a single student of theirs to attend this conference either. Forget for paper presentation, not even for plain attendance.

The acceptance rate this time round was a bit higher, at about 60%. In the earlier ISTAMs which I attended, it has been 50% and lower; in fact, perhaps as low as 33% (if not 25%, but I don’t remember it too well, so let’s say, 33%). Pretty decent. Better than many reputed international journals. Even then, they still didn’t send a single student. [And, I am sure, this evil + stupid primary intended readership, while evaluating my employment application, would immediately pounce on the fact that I have no journal paper to my credit, only conference papers—if they could get past this metallurgy-to-mechanical “branch-jump” issue.]

These stupid idiots (and possibly evil characters—remember, free will as the basis of morality) with government-assured jobs and pensions and prestige, perhaps realized that if they attended the ISTAM conference, they might run into inter-/multi-/trans-disciplinary researches in mechanics and mechanical engineering. They perhaps also further realized that such a fact might then run counter to the one specific belief they fondly cuddle, cherish, openly advocate, defend and profess, and unhesitatingly act on: namely, that metallurgical graduates with PhD in mechanical cannot teach in or be hired by mechanical departments.

5. As to the research presented in the conference, much of it was not related to my current interests. But still, getting to know about the topics that other people are working on, the ideas they are pursuing, is always intellectually invigorating. I would like to write about the research part separately. Research, in fact any productive work, is such a noble thing. In contrast, for this post, I would not like to dilute the intensity of the focus on my joblessness due to the downright stupidity/evil of these above-mentioned professors/directors/government’s son in laws, etc.

However, I guess I could still mention just a couple of things in the passing.

5.1 One was the mention of the infinite speed of propagation of heat flux in conduction, during the invited lecture by Prof. I. Chung Liu of the National Chi Nan University, Taiwan. (I involuntarily sat up straight from my habitual slump while sitting in that cozy main auditorium at DIAT.) The approach Prof. Liu began with, was already known to me from my arXiv browsing. [No, the stupid intended readership of Mechanical Engineering Professors, Deans and Directors etc., arXiv usually does not have mechanical engineering related articles. So, you need not bother with this research any further, going by your government-funded and -enforced “logic.”] This approach consists of having a hyperbolic equation (the telegrapher’s equation) in place of the usual parabolic one. These days, a fairly neat Wiki page also exists to explain this approach; see here [^]. After his talk, I walked up to him and tried to explain how a particles-based approach makes it possible to remove the instantaneous action at a distance (IAD). However, Prof. Liu was not very well conversant with the Brownian movement/Weiner processes, and so, I could not pursue the conversation further. I just passingly mentioned my own research on diffusion equation to him. [The stupid primary intended readership of government-funded Mechanical Engineering Professors, University Deans and Directors etc., wouldn’t be able to make out why the IAD at all is an issue in the first place. They wouldn’t be able to make out even after being explicitly told twice.] Anyway, even if very brief, this discussion with Prof. Liu did help bring up some of my own thoughts. There is a certain paper on diffusion equation by a Berkeley professor which I had discovered after publishing my paper, and I would like to discuss it. Guess I will write a post at iMechanica (and, naturally, also here) about it, before sending a revised paper on this topic to a journal.

5.2 The second thing was this idea that had struck me while teaching a course on FEM to the COEP undergraduates in Spring 2009. [Yes, stupid/evil intended readership, I did teach the students of the mechanical branch as well, but only as a visiting faculty, and only for one semester. I was not repeated, despite very good student feedback [which Prof. Anil Sahasrabudhe, Director, COEP, didn’t quite share with me, unlike with his practice with other professors, but I do surmise with some pretty good basis—the direct feedback of students to me–that even my official student evaluation/feedback must have been pretty good.]] The idea is concerning finding a physical interpretation for the method of weighted residuals (MWR)—or, at the least, connecting some more mathematical context to MWR, anyway. My idea being too premature, I had not shared it with these undergraduate students back then. However, since the MTech-level students are a bit more mature, I did briefly hint at it while teaching the course on FEM at Symbiosis this year.

SPOILER ALERT: I may write a paper on this idea.

The idea is this: It first struck me that there was some kind of an analog between fitting a straight line to a scatter plot (say, the least-squares fit), and the method of weighted residuals. Sure, the first is an algebraic system and the second one involves differential equations. (Even if the ansatz is algebraic (a polynomial), before getting to the residuals, you still have to differentiate it, thereby changing the nature of the game.) The algebraic vs the infinitesimal is a big difference, and it is there. Yet, the idea of a residual (and setting it to zero) is common.

Then, I recalled that it was basically the same guy who had thought of both of these ideas, at least in their seed form: C. F. Gauss. (Ok, off-hand, I think that the least squares had already been used by someone else, before Gauss, but Gauss reinvented it independently, anyway. (Turns out, that earlier guy was Legendre [^])). The fact that the same mind had invented both the techniques helped gain more confidence in this idea of treating something like the least squares as an analog of the MWR.

In this conference, I got a chance to sound out this idea to two senior professors of mathematics: Prof. Kaloni of University of Windsor, and Prof. Rathish Kumar of IIT Kanpur. Specifically, I asked them if someone had already worked out something following, say, a function spaces-based approach.

Here, I was trying very hard to recall my earlier general reading decades ago concerning topological interpretation of the differentiation operation and all, and its recent mention by Prof. Tim Poston in a brief communication that I had with him. (It was a point which I had not at all understood at all.) Now at this conference, while talking in the hallways and all, I was trying to recollect those words. But somehow, in the hustle and bustle of the conference and the very short time available for those lounge/hall discussions, I could not recall any of such words. So, I tossed the first word I could catch hold of: function spaces.

Prof. Kaloni thought that someone must have worked on it already. In contrast, Prof. Rathish Kumar raised an entirely different point: where is convergence on the algebraic side of it, he asked. According to him, MWR was not limited to just getting to the residual and setting its domain integral to zero. The essence of MWR also had to include the idea of convergence—of a (possibly infinite) sequence of steps, of a systematic process of reducing the discretization error. In contrast, on the algebraic side of it, he observed, it’s just a one-time affair: you just take the fit, and that’s it. There is nothing more to be done; there is no second step; there is no sequence; the idea of convergence doesn’t apply.

In the busy-ness of such sideways discussions, there was no time to explain that I could get (i.e. I already was thinking of) an algebraic system that can still involve the ideas of convergence. In fact, I thought about it and got at an example right on the fly. But I was sure I couldn’t have explained it in the right words—the idea just flashed right during the conversation. So, not to waste his time, I asked him what would he think of it if I could get such a system (a multi-step, converging but algebraic system), and try to establish an analog with the differential equations-involving MWR. He then said that perhaps such a thing has not been done before, and that it would be nice to have a connection like that formally worked out. [I will repeat this part in a separate post, also at iMechanica, but in the meanwhile, if you know that someone has already worked out something along these lines, please drop me a line; thanks in advance.]

So there. The stupid/evil primary intended readership, these discussions, per your government-funded and government-enforced “logic,” had nothing to do with mechanical engineering. After all, both the professors were from the department of mathematics. So, you the stupid/evil primary intended readership (consisting of folks like G. K. Kharate, A. A. Ghatol, D. W. Pande, G. B. Pant, their friends, etc.), you all sit cozy and quiet and keep on drawing your respective 6th-pay commission-enhanced salaries, allowances, refunds, etc. Keep faithfully doing that, you stupids/idiots/evils.

[I remain jobless; the “A Song I Like” section is once again being dropped.]

[E&OE]

Advertisements

The Recent Workshop on Advanced Nonlinear FEM at COEP

For the couple of days that just passed by, i.e. on April 9 and 10, I attended a two-day Workshop on Advanced Nonlinear FEM at COEP [^]. It was organized jointly by Pro-Sim, Bangalore [^] and COEP’s Mechanical Engineering Department. However, quite a few people from some other organizations also came in to deliver their talks. These included managers or senior engineers in charge of the CAE departments in Eaton, Mahindras, Tata Motors, CDAC, and others. The new Vice-Chancellor of the University of Pune, Dr. Shevgaonkar, also dropped by for the inaugural function.

BTW, this being COEP, there never was any question of their inviting me to give a lecture/talk as a part of any workshop such as this. I suppose that they would consider it as compromising their [unstated] standards of quality. However, I did pay their registration fees, and attend the event as a regular attendee, just to see what all things were being discussed during the event.

One part of my interest in attending this workshop concerned learning. I have never been taught FEM in a class-room, or for that matter by anyone in person as such—I’ve picked up all my FEM on my own, by going through books and writing my own code, and then also by interacting via blogs/emails. (For example, see my grappling of the issue of banding and discontinuity of the derivatives, on iMechanica, here [^], something which I took complete care of soon later on, way before beginning teaching my FEM courses at COEP and CDO/MERI….) Anyway, given that I had never sat in an FEM classroom, I thought that it might be fun to do so, for a change. Another part of my interest in the workshop touched on my professional interests. I have myself begun conducting courses on fundamentals of FEM, and I wanted to compare the cost-to-benefit ratio for my course offering vis-a-vis others’.

Overall, I would say that it was only a barely acceptable deal at Rs. 4,000/- for the two days.  Of course, it certainly was worth more than a thousand bucks a day. I think it would have been a fairly good deal at about Rs. 2,500/- or so.

One doesn’t keep quite the same expectations from a workshop as one would from a training course. Yet, considering the fact that the settings for this workshop would be academic, it would have been better if the topics in this Workshop were to be sequenced better and treated differently. What happened in this workshop was that the individual faculty members were, by and large, actually good and knowledgeable engineers. Yet, the actual amount of knowledge to get transferred was, I am afraid, only minimal.

Many of the speakers could neither pace themselves well nor select their main topics (or subtopics) well. Further, the sequence of these lectures was not very well organized. There was this absence of an integrating theme continuously running through the lectures.

Now, I realize that it is always difficult to ensure a theme even for a small group of speakers. Sticking to a theme would be even more difficult to ensure in a workshop that is delivered by 5+ people. Yet, if you look at say, SIGGRAPH workshops in the USA, or, closer to India, the workshops covered in the NDT-related events, one can clearly see that maintaining an integrating theme, in which people progress from simple topics and fundamentals on to more complex topics and applications, is not as difficult as it might otherwise sound.

Since there was no theme, it had the appearance of a collage, not of a coherent picture. I mean, if you were to catch hold of a typical young attendee (say a BTech/MTech student) and if you were to ask him to identify in one line what distinguishes non-linearity from linearity in the context of FEM, he won’t be able to tell you that it’s all about going from: \begin{bmatrix}A\end{bmatrix} \begin{Bmatrix}x\end{Bmatrix} = \begin{Bmatrix}b\end{Bmatrix} to: \begin{bmatrix}A(x)\end{bmatrix} \begin{Bmatrix}x\end{Bmatrix} = \begin{Bmatrix}b\end{Bmatrix}. … In this workshop, there was an impressive array of topics, many insights, even more colorful pictures… But little reference was made to fundamentals.

So, if such a workshop is to be conducted in future, I think there should be three/four  (at least two/three) short tutorial or review sessions (of 1.5 to 2 hours each, complete with fill-in-the-blank type of worksheets), before the biggies begin to deliver their talks. It would always be helpful to review basics first. And, the matter should not end there. The entire workshop should be a well-ordered progression.

Another matter. The lectures should be interspersed with 30 minute sessions of actually working out simple problems, using an actual software. It would be OK even if such demos did not include hands-on experience.

Yet another matter. A workshop like this should include applications to fracture processes and mechanics. Also, handling the differential kind of non-linearity via FEM, for instance, modeling of the Navier-Stokes equation using FEM. A discussion of this aspect was surprisingly absent.

Also another matter. For an advanced topic like Nonlinear FEM, the discussions must touch upon how to abstract boundary and initial conditions from the given actual situation. This should be done via giving specific references to a few examples, rather than breezing through numerous case studies with the assumption that the audience knows how to specify the constraints. It should be assumed that they don’t. This must be done even if you don’t include topics like well-posedness, dynamic instability-related points, and so on.

One last point. This is not specific to this particular workshop, but to almost any lecture/delivery by almost any Indian researchers/engineers. Namely, that they are either poor on presentation skills. Or, they are *very* poor.

… Among all the lectures, those by Mr. Ashok Joshi (Manager, CAE, Tata Motors), Mr. Anil Gupta (Manager, CAE, Eaton), and Dr. Sundarrajan (Group Coordinator, CDAC) stood out, on this particular point. Especially the one by Mr. Joshi. …

… But many other speakers had just plain unacceptable habits of speaking: not realizing that too much time is being spent on trivia while keeping a single slide open for too long and then rushing through many other more relevant ones; lecture delivery that comes far too haltingly with far too many pauses and breaks; just too much of jumping around the sub-phrases of a single sentence with absolutely indiscriminate levels of “it”s thrown in… In general, far too much mangling of the grammar…  That way, I have no issues with accent—even an outright regional sort of accent—so long as the speaker is clear and audible. I do have a lot of issues with the contents, the grammar, and the general way of delivering statements—regardless of the accent.

I think that if they tape their lecture delivery and listen to it later (or better still: try to transcribe it on paper), they themselves will realize what they need to do. Here is a made-up example:

“… I mean, it is not like, … let me tell you, what I am trying to do it here… As the forces will be applied to it… and… it will not be the same everywhere… I am telling you, it will be different and why it will be happening is… it will not be the same… It will vary… this point, this point… Ok… You can see, it will be different, the displacement.”

The speaker takes so many pauses, so many breaks, before you realize that what he is trying to point out is the spatial non-uniformity of the displacement field—not of the applied traction (a quantity that too is visible, in a colorful manner, in the same diagram, but something which neither the uttered words nor the waved hands make any reference to, even if necessary in this context).

And, BTW, in this made-up example, I have used fewer “it”s and “will”s. I just can’t get why they can’t workout the structure of a sentence just a fraction of a second in advance before proceeding to utter it. Why do they just have to jump in somewhere in the middle of a thought, literally wherever they want, blurt out those pieces, and then haphazardly attempt to connect them with only one constant expression on the face: why are you not getting me?  … What would be so wrong if the speaker were just to take a complete pause (not even those “umms” and “hmmms”), and then just say: “A force is applied over this part of the boundary. We are interested in the displacement field in this region. We are first interested in displacement because it’s the primary unknown. As expected, the displacement field is not uniform. The interesting feature of its non-uniformity is … [so and so]. … Let’s try to understand the causal relation of this pattern with the distribution of the applied traction.”

… More than a mere presentation skills issue, I think there also is something about mental discipline, and more: something about keeping some concern with inductive integration rather than with the deductive jumping around.

I think they should hire professionals from those management/BPO/similar training institutes and undergo a special training course on public speaking. Further, I think they should also introduce some basics of applied epistemology (say, as what even today gets covered in the better among those BEd/MEd courses) in the engineering/science curricula to highlight the importance of ordering, hierarchy, perceptual referents, inductive arguments, integration, and general pacing out the things to be taught. And I think they should make these courses compulsory, the grades being included in the final GPA. Then, the students will take these matters seriously, and then, the future speakers will turn out to be better.

Of course, the above criticism doesn’t mean that there was no value in the workshop. As I said, it certainly was worth about half the price. Also, the above criticism was based not just on this workshop but on virtually all the conferences that I have attended in the past decade in India (including the ISTAM ones). Indian engineers and scientists, in general (exceptions granted), are very poor on presentation skills.

Coming back to this workshop in particular, there indeed was some definite value to it. But still, … how do I put it?… I think the biggest “carry home” point(*) about it was not the contents of the proceedings themselves—it was: those shake-hands and the exchange of the visiting cards before and after the talks. … Sorry, I still can’t call them as my “contacts” yet, but yes, that socializing was, the way I see it, the biggest import of the event for most of the attendees. And that, whether for the good or for the bad, would summarize the nature of this event right.

It was so for me too…. But, apart from it, to me, personally, the event happened to provide one unexpected benefit: it boosted my confidence. (You might want to read it a little differently, too.)

And, there were certain other pleasant moments on the side, too. Dr. Shevgaonkar highlighted the importance of building CAE software in India—as against merely using the packages made abroad. Dr. Arul Selvan tried to drive home the point that materials modeling was right at the core of advanced FEM for mechanical engineers too (though I can’t be sure that the point reached the aforementioned “home”). Dr. Shamasundar indicated how automated optimization was no longer a “hi fi” thing of research but a tool already deployed right here, in Indian industry. Dr. Sreehari Kumar and Dr. Sundarrajan even touched on the issues related to solver technologies, and their discussions of the topic was a welcome addition given the kind of issue that typical Indian mechanical engineers have with any discipline other than their own, e.g. disciplines like computer science, metallurgy, instrumentation, or physics.

(*I can’t recall the informal word they use in such contexts—esp. for conferences—something like “carry home” or “upshot” “take out” or something like that…)

– – – – –

A Couple of Songs I Like:

1. (Marathi) “daari paaoos paDato, raani paaravaa bhijato…”
Singer: Suman Kalyanpur
Music: Ashok Patki
Lyrics: Ashok G. Paranjape

2. (Marathi) “bolaavaa vithhal, pahaavaa vithhal…”
Lyrics: “sant tukaaraam”
Singer: “prabhaakar kaarekar” [Not sure yet, but it appears to be him. In my guesswork, many clues I gave here earlier turned out to have been incorrect. But I could locate my CD, though not its cover. I still need to check if it’s Karekar, which I could do starting with the publication number they print on the CD itself. And, yes, in any case, IMHO, this rendition is better than any one any other singer, notably: Kishori Amonkar, Jitendra Abhisheki, Aarati Anklikar-Tikekar, Shaunak Abhisheki, others…. If it indeed is Karekar, then the “shishya” obviously rendered it better than the “guru.” I say this even if in the Indian classical music tradition it is a taboo to claim the superiority of the “shishya” if the claimant is not the “guru” in question himself. … Weird! (And let me know if you want the original clues to appear here, possibly scratched out—I hardly care for the “rules” of blogging either!!]

Why Publish Only at Conferences? Why Not in Journals?—A Note

A special note concerning why I chose to publish my recent PhD research results in conferences held in India, rather than in the usual academic journals published abroad (notably in/from USA), is available for downloading as a separate document from here: [PDF format, ~91 kB] . Though a PDF document, please note, it has been written pretty hastily. As such, it might undergo minor revisions. Read it if interested.

Update on August 16, 2008, 9:18 PM IST: The PDF document has been revised today; the URL remains the same.

High-Performance Cluster-Based Computing for Engineering Design

A small two-day conference arranged by SAE India (Western Section) just got over in Pune today… The conference was arranged as a part of the annual (or so) auto industry/trade exhibition called “AutoDesign”. The trade exhibition itself was held at the ICC (International Convention Center) in Pune, on the 16th and 17th of February, whereas the more specialized or technically oriented conference to go with it was held later on, on the 18th and 19th of February, at the ARAI (Automotive Research Association of India), Pune.

I was invited to deliver a talk in this conference, and I gave an introductory one on the title topic. (This is precisely the conference that I had mentioned I was preparing for, in one of my earlier posts below.)

I had thought that the title topic would be relevant for this year’s “AutoDesign.” I thought that the news of Tata Sons’ “Eka” being the 4th fastest supercomputer in the world, would have generated some excitement even among the automobile engineering student community. But, once at the conference, I found out that I was somewhat off the mark in keeping that anticipation. The audience was not so well-geared towards hearing much about mega-flops and giga-flops. My talk did not quite go flat as such… But still, there wasn’t much excitement about what a faster computer could do for them—the very subject matter itself….

There seems to be this gap or disconnect between the three kinds of people involved: the automobile styling professionals, the mechanical design engineers, and the recent advancements in computers field. This was a bit surprising to me for a city like Pune. In a way, of course, that kind of a disconnect precisely highlights the relevance and the necessity of the events like AutoDesign.

Anyway, I am now attaching the .PDF slides of my own talk here:  AjitJadhav_SAE_AutoDesign2008.PDF (219 kB). This PowerPoint presentation contains some introductory remarks as well as some preliminary but honest data about how the ordinary PC desktops would actually fare when they are used as individual nodes in an HPC cluster. That is, for real-life sized data (i.e. for larger matrices)…. Feel free to download the PDF file of the slides, and do leave a comment if you think that I am making a mistake somewhere in them.