Do you really need a QC in order to have a really unpredictable stream of bits?

0. Preliminaries:

This post has reference to Roger Schlafly’s recent post [^] in which he refers to Prof. Scott Aaronson’s post touching on the issue of the randomness generated by a QC vis-a-vis that obtained using the usual classical hardware [^], in particular, to Aaronson’s remark:

“the whole point of my scheme is to prove to a faraway skeptic—one who doesn’t trust your hardware—that the bits you generated are really random.”

I do think (based on my new approach to QM [(PDF) ^]) that building a scalable QC is an impossible task.

I wonder if they (the QC enthusiasts) haven’t already begun realizing the hopelessness of their endeavours, and thus haven’t slowly begun preparing for a graceful exit, say via the QC-as-a-RNG route.

While Aaronson’s remarks also saliently involve the element of the “faraway” skeptic, I will mostly ignore that consideration here in this post. I mean to say, initially, I will ignore the scenario in which you have to transmit random bits over a network, and still have to assure the skeptic that what he was getting at the receiving end was something coming “straight from the oven”—something which was not tampered with, in any way, during the transit. The skeptic would have to be specially assured in this scenario, because a network is inherently susceptible to a third-party attack wherein the attacker seeks to exploit the infrastructure of the random keys distribution to his advantage, via injection of systematic bits (i.e. bits of his choice) that only appear random to the intended receiver. A system that quantum-mechanically entangles the two devices at the two ends of the distribution channel, does logically seem to have a very definite advantage over a combination of ordinary RNGs and classical hardware for the network. However, I will not address this part here—not for the most part, and not initially, anyway.

Instead, for most of this post, I will focus on just one basic question:

Can any one be justified in thinking that an RNG that operates at the QM-level might have even a slightest possible advantage, at least logically speaking, over another RNG that operates at the CM-level? Note, the QM-level RNG need not always be a general purpose and scalable QC; it can be any simple or special-purpose device that exploits, and at its core operates at, the specifically QM-level.

Even if I am a 100% skeptic of the scalable QC, I also think that the answer on this latter count is: yes, perhaps you could argue that way. But then, I think, your argument would still be pointless.

Let me explain, following my approach, why I say so.


2. RNGs as based on nonlinearities. Nonlinearities in QM vs. those in CM:

2.1. Context: QM involves IAD:

QM does involve either IAD (instantaneous action a distance), or very, very large (decidedly super-relativistic) speeds for propagation of local changes over all distant regions of space.

From the experimental evidence we have, it seems that there have to be very, very high speeds of propagation, for even smallest changes that can take place in the \Psi and V fields. The Schrodinger equation assumes infinitely large speeds for them. Such obviously cannot be the case—it is best to take the infinite speeds as just an abstraction (as a mathematical approximation) to the reality of very, very high actual speeds. However, the experimental evidence also indicates that even if there has to be some or the other upper bound to the speeds v, with v \gg c, the speeds still have to be so high as to seemingly approach infinity, if the Schrodinger formalism is to be employed. And, of course, as you know it, Schrodinger’s formalism is pretty well understood, validated, and appreciated [^]. (For more on the speed limits and IAD in general, see the addendum at the end of this post.)

I don’t know the relativity theory or the relativistic QM. But I guess that since the electric fields of massive QM particles are non-uniform (they are in fact singular), their interactions with \Psi must be such that the system has to suddenly snap out of some one configuration and in the same process snap into one of the many alternative possible configurations. Since there are huge (astronomically large) number of particles in the universe, the alternative configurations would be {astronomically large}^{very large}—after all, the particles positions and motions are continuous. Thus, we couldn’t hope to calculate the propagation speeds for the changes in the local features of a configuration in terms of all those irreversible snap-out and snap-in events taken individually. We must take them in an ensemble sense. Further, the electric charges are massive, identical, and produce singular and continuous fields. Overall, it is the ensemble-level effects of these individual quantum mechanical snap-out and snap-in events whose end-result would be: the speed-of-light limitation of the special relativity (SR). After all, SR holds on the gross scale; it is a theory from classical electrodynamics. The electric and magnetic fields of classical EM can be seen as being produced by the quantum \Psi field (including the spinor function) of large ensembles of particles in the limit that the number of their configurations approaches infinity, and the classical EM waves i.e. light are nothing but the second-order effects in the classical EM fields.

I don’t know. I was just loud-thinking. But it’s certainly possible to have IAD for the changes in \Psi and V, and thus to have instantaneous energy transfers via photons across two distant atoms in a QM-level description, and still end up with a finite limit for the speed of light (c) for large collections of atoms.

OK. Enough of setting up the context.

2.2: The domain of dependence for the nonlinearity in QM vs. that in CM:

If QM is not linear, i.e., if there is a nonlinearity in the \Psi field (as I have proposed), then to evaluate the merits of the QM-level and CM-level RNGs, we have to compare the two nonlinearities: those in the QM vs. those in the CM.

The classical RNGs are always based on the nonlinearities in CM. For example:

  • the nonlinearities in the atmospheric electricity (the “static”) [^], or
  • the fluid-dynamical nonlinearities (as shown in the lottery-draw machines [^], or the lava lamps [^]), or
  • some or the other nonlinear electronic circuits (available for less than $10 in hardware stores)
  • etc.

All of them are based on two factors: (i) a large number of components (in the core system generating the random signal, not necessarily in the part that probes its state), and (ii) nonlinear interactions among all such components.

The number of variables in the QM description is anyway always larger: a single classical atom is seen as composed from tens, even hundreds of quantum mechanical charges. Further, due to the IAD present in the QM theory, the domain of dependence (DoD) [^] in QM remains, at all times, literally the entire universe—all charges are included in it, and the entire \Psi field too.

On the other hand, the DoD in the CM description remains limited to only that finite region which is contained in the relevant past light-cone. Even when a classical system is nonlinear, and thus gets crazy very rapidly with even small increases in the number of degrees of freedom (DOFs), its DoD still remains finite and rather very small at all times. In contrast, the DoD of QM is the whole universe—all physical objects in it.

2.3 Implication for the RNGs:

Based on the above-mentioned argument, which in my limited reading and knowledge Aaronson has never presented (and neither has any one else either, basically because they all continue to believe in von Neumann’s characterization of QM as a linear theory), an RNG operating at the QM level does seem to have, “logically” speaking, an upper hand over an RNG operating at the CM level.

Then why do I still say that arguing for the superiority of a QM-level RNG is still pointless?


3. The MVLSN principle, and its epistemological basis:

If you apply a proper epistemology (and I have in my mind here the one by Ayn Rand), then the supposed “logical” difference between the two descriptions becomes completely superfluous. That’s because the quantities whose differences are being examined, themselves begin to lose any epistemological standing.

The reason for that, in turn, is what I call the MVLSN principle: the law of the Meaninglessness of the Very Large or very Small Numbers (or scales).

What the MVLSN principle says is that if your argument crucially depends on the use of very large (or very small) quantities and relationships between them, i.e., if the fulcrum of your argument rests on some great extrapolations alone, then it begins to lose all cognitive merit. “Very large” and “very small” are contextual terms here, to be used judiciously.

Roughly speaking, if this principle is applied to our current situation, what it says is that when in your thought you cross a certain limit of DOFs and hence a certain limit of complexity (which anyway is sufficiently large as to be much, much beyond the limit of any and every available and even conceivable means of predictability), then any differences in the relative complexities (here, of the QM-level RNGs vs. the CM-level RNGs) ought to be regarded as having no bearing at all on knowledge, and therefore, as having no relevance in any practical issue.

Both QM-level and CM-level RNGs would be far too complex for you to devise any algorithm or a machine that might be able to predict the sequence of the bits coming out of either. Really. The complexity levels already grow so huge, even with just the classical systems, that it’s pointless trying to predict the the bits. Or, to try and compare the complexity of the classical RNGs with the quantum RNGs.

A clarification: I am not saying that there won’t be any systematic errors or patterns in the otherwise random bits that a CM-based RNG produces. Sure enough, due statistical testing and filtering is absolutely necessary. For instance, what the radio-stations or cell-phone towers transmit are, from the viewpoint of a RNG based on radio noise, systematic disturbances that do affect its randomness. See random.org [^] for further details. I am certainly not denying this part.

All that I am saying is that the sheer number of DOF’s involved itself is so huge that the very randomness of the bits produced even by a classical RNG is beyond every reasonable doubt.

BTW, in this context, do see my previous couple of posts dealing with probability, indeterminism, randomness, and the all-important system vs. the law distinction here [^], and here [^].


4. To conclude my main argument here…:

In short, even “purely” classical RNGs can be way, way too complex for any one to be concerned in any way about their predictability. They are unpredictable. You don’t have to go chase the QM level just in order to ensure unpredictability.

Just take one of those WinTV lottery draw machines [^], start the air flow, get your prediction algorithm running on your computer (whether classical or quantum), and try to predict the next ball that would come out once the switch is pressed. Let me be generous. Assume that the switch gets pressed at exactly predictable intervals.

Go ahead, try it.


5. The Height of the Tallest Possible Man (HTPM):

If you still insist on the supposedly “logical” superiority of the QM-level RNGs, make sure to understand the MVLSN principle well.

The issue here is somewhat like asking this question:

What could possibly be the upper limit to the height of man, taken as a species? Not any other species (like the legendary “yeti”), but human beings, specifically. How tall can any man at all get? Where do you draw the line?

People could perhaps go on arguing, with at least some fig-leaf of epistemological legitimacy, over numbers like 12 feet vs. 14 feet as the true limit. (The world record mentioned in the Guinness Book is slightly under 9 feet [^]. The ceiling in a typical room is about 10 feet high.) Why, they could even perhaps go like: “Ummmm… may be 12 feet is more likely a limit than 24 feet? whaddaya say?”

Being very generous of spirit, I might still describe this as a borderline case of madness. The reason is, in the act of undertaking even just a probabilistic comparison like that, the speaker has already agreed to assign non-zero probabilities to all the numbers belonging to that range. Realize, no one would invoke the ideas of likelihood or probability theory if he thought that the probability for an event, however calculated, was always going to be zero. He would exclude certain kinds of ranges from his analysis to begin with—even for a stochastic analysis. … So, madness it is, even if, in my most generous mood, I might regard it as a borderline madness.

But if you assume that a living being has all the other characteristic of only a human being (including being naturally born to human parents), and if you still say that in between the two statements: (A) a man could perhaps grow to be 100 feet tall, and (B) a man could perhaps grow to be 200 feet tall, it is the statement (A) which is relatively and logically more reasonable, then what the principle (MVLSN) says is this: “you basically have lost all your epistemological bearing.”

That’s nothing but complex (actually, philosophic) for saying that you have gone mad, full-stop.

The law of the meaningless of the very large or very small numbers does have a certain basis in epistemology. It goes something like this:

Abstractions are abstractions from the actually perceived concretes. Hence, even while making just conceptual projections, the range over which a given abstraction (or concept) can remain relevant is determined by the actual ranges in the direct experience from which they were derived (and the nature, scope and purpose of that particular abstraction, the method of reaching it, and its use in applications including projections). Abstractions cannot be used in disregard of the ranges of the measurements over which they were formed.

I think that after having seen the sort of crazy things that even simplest nonlinear systems with fewest variables and parameters can do (for instance, which weather agency in the world can make predictions (to the accuracy demanded by newspapers) beyond 5 days? who can predict which way is the first vortex going to be shed even in a single cylinder experiment?), it’s very easy to conclude that the CM-level vs. QM-level RNG distinction is comparable to the argument about the greater reasonableness of a 100 feet tall man vs. that of a 200 feet tall man. It’s meaningless. And, madness.


6. Aaronson’s further points:

To be fair, much of the above write-up was not meant for Aaronson; he does readily grant the CM-level RNGs validity. What he says, immediately after the quote mentioned at the beginning of this post, is that if you don’t have the requirement of distributing bits over a network,

…then generating random bits is obviously trivial with existing technology.

However, since Aaronson believes that QM is a linear theory, he does not even consider making a comparison of the nonlinearities involved in QM and CM.

I thought that it was important to point out that even the standard (i.e., Schrodinger’s equation-based) QM is nonlinear, and further, that even if this fact leads to some glaring differences between the two technologies (based on the IAD considerations), such differences still do not lead to any advantages whatsoever for the QM-level RNG, as far as the task of generating random bits is concerned.

As to the task of transmitting them over a network is concerned, Aaronson then notes:

If you do have the requirement, on the other hand, then you’ll have to do something interesting—and as far as I know, as long as it’s rooted in physics, it will either involve Bell inequality violation or quantum computation.

Sure, it will have to involve QM. But then, why does it have to be only a QC? Why not have just special-purpose devices that are quantum mechanically entangled over wires / EM-waves?

And finally, let me come to yet another issue: But why would you at all have to have that requirement?—of having to transmit the keys over a network, and not using any other means?

Why does something as messy as a network have to get involved for a task that is as critical and delicate as distribution of some super-specially important keys? If 99.9999% of your keys-distribution requirements can be met using “trivial” (read: classical) technologies, and if you can also generate random keys using equipment that costs less than $100 at most, then why do you have to spend billions of dollars in just distributing them to distant locations of your own offices / installations—especially if the need for changing the keys is going to be only on an infrequent basis? … And if bribing or murdering a guy who physically carries a sealed box containing a thumb-drive having secret keys is possible, then what makes the guys manning the entangled stations suddenly go all morally upright and also immortal?

From what I have read, Aaronson does consider such questions even if he seems to do so rather infrequently. The QC enthusiasts, OTOH, never do.

As I said, this QC as an RNG thing does show some marks of trying to figure out a respectable exit-way out of the scalable QC euphoria—now that they have already managed to wrest millions and billions in their research funding.

My two cents.


Addendum on speed limits and IAD:

Speed limits are needed out of the principle that infinity is a mathematical concept and cannot metaphysically exist. However, the nature of the ontology involved in QM compels us to rethink many issues right from the beginning. In particular, we need to carefully distinguish between all the following situations:

  1. The transportation of a massive classical object (a distinguishable, i.e. finite-sized, bounded piece of physical matter) from one place to another, in literally no time.
  2. The transmission of the momentum or changes in it (like forces or changes in them) being carried by one object, to a distant object not in direct physical contact, in literally no time.
  3. Two mutually compensating changes in the local values of some physical property (like momentum or energy) suffered at two distant points by the same object, a circumstance which may be viewed from some higher-level or abstract perspective as transmission of the property in question over space but in no time. In reality, it’s just one process of change affecting only one object, but it occurs in a special way: in mutually compensating manner at two different places at the same time.

Only the first really qualifies to be called spooky. The second is curious but not necessarily spooky—not if you begin to regard two planets as just two regions of the same background object, or alternatively, as two clearly different objects which are being pulled in various ways at the same time and in mutually compensating ways via some invisible strings or fields that shorten or extend appropriately. The third one is not spooky at all—the object that effects the necessary compensations is not even a third object (like a field). Both the interacting “objects” and the “intervening medium” are nothing but different parts of one and the same object.

What happens in QM is the third possibility. I have been describing such changes as occurring with an IAD (instantaneous action at a distance), but now I am not too sure if such a usage is really correct or not. I now think that it is not. The term IAD should be reserved only for the second category—it’s an action that gets transported there. As to the first category, a new term should be coined: ITD (instantaneous transportation to distance). As to the third category, the new term could be IMCAD (instantaneous and mutually compensating actions at a distance). However, this all is an afterthought. So, in this post, I only have ended up using the term IAD even for the third category.

Some day I will think more deeply about it and straighten out the terminology, may be invent some or new terms to describe all the three situations with adequate directness, and then choose the best… Until then, please excuse me and interpret what I am saying in reference to context. Also, feel free to suggest good alternative terms. Also, let me know if there are any further distinctions to be made, i.e., if the above classification into three categories is not adequate or refined enough. Thanks in advance.


A song I like:

[A wonderful “koLi-geet,” i.e., a fisherman’s song. Written by a poet who hailed not from the coastal “konkaN” region but from the interior “desh.” But it sounds so authentically coastal… Listening to it today instantly transported me back to my high-school days.]

(Marathi) “suTalaa vaadaLi vaaraa…”
Singing, Music and Lyrics: Shaahir Amar Sheikh

 


History: Originally published on 2019.07.04 22:53 IST. Extended and streamlined considerably on 2019.07.05 11:04 IST. The songs section added: 2019.07.05 17:13 IST. Further streamlined, and also further added a new section (no. 6.) on 2019.07.5 22:37 IST. … Am giving up on this post now. It grew from about 650 words (in a draft for a comment at Schlafly’s blog) to 3080 words as of now. Time to move on.

Still made further additions and streamlining for a total of ~3500 words, on 2019.07.06 16:24 IST.

Advertisements

Determinism, Indeterminism, Probability, and the nature of the laws of physics—a second take…

After I wrote the last post [^], several points struck me. Some of the points that were mostly implicit needed to be addressed systematically. So, I began writing a small document containing these after-thoughts, focusing more on the structural side of the argument.

However, I don’t find time to convert these points + statements into a proper write-up. At the same time, I want to get done with this topic, at least for now, so that I can better focus on some other tasks related to data science. So, let me share the write-up in whatever form it is in, currently. Sorry for its uneven tone and all (compared to even my other writing, that is!)


Causality as a concept is very poorly understood by present-day physicists. They typically understand only one sense of the term: evolution in time. But causality is a far broader concept. Here I agree with Ayn Rand / Leonard Peikoff (OPAR). See the Ayn Rand Lexicon entry, here [^]. (However, I wrote the points below without re-reading it, and instead, relying on whatever understanding I have already come to develop starting from my studies of the same material.)

Physical universe consists of objects. Objects have identity. Identity is the sum total of all characteristics, attributes, properties, etc., of an object. Objects act in accordance with their identity; they cannot act otherwise. Interactions are not primary; they do not come into being without there being objects that undergo the interactions. Objects do not change their respective identities when they take actions—not even during interactions with other objects. The law of causality is a higher-level view taken of this fact.

In the cause-effect relationship, the cause refers to the nature (identity) of an object, and the effect refers to an action that the object takes (or undergoes). Both refer to one and the same object. TBD: Trace the example of one moving billiard ball undergoing a perfectly elastic collision with another billiard ball. Bring out how the interaction—here, the pair of the contact forces—is a name for each ball undergoing an action in accordance with its nature. An interaction is a pair of actions.


A physical law as a mapping (e.g., a function, or even a functional) from inputs to outputs.

The quantitative laws of physics often use the real number system, i.e., quantification with infinite precision. An infinite precision is a mathematical concept, not physical. (Expect physicists to eternally keep on confusing between the two kinds of concepts.)

Application of a physical law traces the same conceptual linkages as are involved in the formulation of law, but in the reverse direction.

In both formulation of a physical law and in its application, there is always some regime of applicability which is at least implicitly understood for both inputs and outputs. A pertinent idea here is: range of variations. A further idea is the response of the output to small variations in the input.


Example: Prediction by software whether a cricket ball would have hit the stumps or not, in an LBW situation.

The input position being used by the software in a certain LBW decision could be off from reality by millimeters, or at least, by a fraction of a millimeter. Still, the law (the mapping) is such that it produces predictions that are within small limits, so that it can be relied on.

Two input values, each theoretically infinitely precise, but differing by a small magnitude from each other, may be taken to define an interval or zone of input variations. As to the zone of the corresponding output, it may be thought of as an oval produced in the plane of the stumps, using the deterministic method used in making predictions.

The nature of the law governing the motion of the ball (even after factoring in aspects like effects of interaction with air and turbulence, etc.) itself is such that the size of the O/P zone remains small enough. (It does not grow exponentially.) Hence, we can use the software confidently.

That is to say, the software can be confidently used for predicting—-i.e., determining—the zone of possible landing of the ball in the plane of the stumps.


Overall, here are three elements that must be noted: (i) Each of the input positions lying at the extreme ends of the input zone of variations itself does have an infinite precision. (ii) Further, the mapping (the law) has theoretically infinite precision. (iii) Each of the outputs lying at extreme ends of the output zone also itself has theoretically infinite precision.

Existence of such infinite precision is a given. But it is not at all the relevant issue.

What matters in applications is something more than these three. It is the fact that applications always involve zones of variations in the inputs and outputs.

Such zones are then used in error estimates. (Also for engineering control purposes, say as in automation or robotic applications.) But the fact that quantities being fed to the program as inputs themselves may be in error is not the crux of the issue. If you focus too much on errors, you will simply get into an infinite regress of error bounds for error bounds for error bounds…

Focus, instead, on the infinity of precision of the three kinds mentioned above, and focus on the fact that in addition to those infinitely precise quantities, application procedure does involve having zones of possible variations in the input, and it also involves the problem estimating how large the corresponding zone of variations in the output is—whether it is sufficiently small for the law and a particular application procedure or situation.

In physics, such details of application procedures are kept merely understood. They are hardly, if ever, mentioned and discussed explicitly. Physicists again show their poor epistemology. They discuss such things in terms not of the zones but of “error” bounds. This already inserts the wedge of dichotomy: infinitely precise laws vs. errors in applications. This dichotomy is entirely uncalled for. But, physicists simply aren’t that smart, that’s all.


“Indeterministic mapping,” for the above example (LBW decisions) would the one in which the ball can be mapped as going anywhere over, and perhaps even beyond, the stadium.

Such a law and the application method (including the software) would be useless as an aid in the LBW decisions.

However, phenomenologically, the very dynamics of the cricket ball’s motion itself is simple enough that it leads to a causal law whose nature is such that for a small variation in the input conditions (a small input variations zone), the predicted zone of the O/P also is small enough. It is for this reason that we say that predictions are possible in this situation. That is to say, this is not an indeterministic situation or law.


Not all physical situations are exactly like the example of the predicting the motion of the cricket ball. There are physical situations which show a certain common—and confusing—characteristic.

They involve interactions that are deterministic when occurring between two (or few) bodies. Thus, the laws governing a simple interaction between one or two bodies are deterministic—in the above sense of the term (i.e., in terms of infinite precision for mapping, and an existence of the zones of variations in the inputs and outputs).

But these physical situations also involve: (i) a nonlinear mapping, (ii) a sufficiently large number of interacting bodies, and further, (iii) coupling of all the interactions.

It is these physical situations which produce such an overall system behaviour that it can produce an exponentially diverging output zone even for a small zone of input variations.

So, a small change in I/P is sufficient to produce a huge change in O/P.

However, note the confusing part. Even if the system behaviour for a large number of bodies does show an exponential increase in the output zone, the mapping itself is such that when it is applied to only one pair of bodies in isolation of all the others, then the output zone does remain non-exponential.

It is this characteristic which tricks people into forming two camps that go on arguing eternally. One side says that it is deterministic (making reference to a single-pair interaction), the other side says it is indeterministic (making reference to a large number of interactions, based on the same law).

The fallacy arises out of confusing a characteristic of the application method or model (variations in input and output zones) with the precision of the law or the mapping.


Example: N-body problem.

Example: NS equations as capturing a continuum description (a nonlinear one) of a very large number of bodies.

Example: Several other physical laws entering the coupled description, apart from the NS equations, in the bubbles collapse problem.

Example: Quantum mechanics


The Law vs. the System distinction: What is indeterministic is not a law governing a simple interaction taken abstractly (in which context the law was formed), but the behaviour of the system. A law (a governing equation) can be deterministic, but still, the system behavior can become indeterministic.


Even indeterministic models or system designs, when they are described using a different kind of maths (the one which is formulated at a higher level of abstractions, and, relying on the limiting values of relative frequencies i.e. probabilities), still do show causality.

Yes, probability is a notion which itself is based on causality—after all, it uses limiting values for the relative frequencies. The ability to use the limiting processes squarely rests on there being some definite features which, by being definite, do help reveal the existence of the identity. If such features (enduring, causal) were not to be part of the identity of the objects that are abstractly seen to act probabilistically, then no application of a limiting process would be possible, and so not even a definition probability or randomness would be possible.

The notion of probability is more fundamental than that of randomness. Randomness is an abstract notion that idealizes the notion of absence of every form of order. … You can use the axioms of probability even when sequences are known to be not random, can’t you? Also, hierarchically, order comes before does randomness. Randomness is defined as the absence of (all applicable forms of) orderliness; orderliness is not defined as absence of randomness—it is defined via the some but any principle, in reference to various more concrete instances that show some or the other definable form of order.

But expect not just physicists but also mathematicians, computer scientists, and philosophers, to eternally keep on confusing the issues involved here, too. They all are dumb.


Summary:

Let me now mention a few important take-aways (though some new points not discussed above also crept in, sorry!):

  • Physical laws are always causal.
  • Physical laws often use the infinite precision of the real number system, and hence, they do show the mathematical character of infinite precision.
  • The solution paradigm used in physics requires specifying some input numbers and calculating the corresponding output numbers. If the physical law is based on real number system, than all the numbers used too are supposed to have infinite precision.
  • Applications always involve a consideration of the zone of variations in the input conditions and the corresponding zone of variations in the output predictions. The relation between the sizes of the two zones is determined by the nature of the physical law itself. If for a small variation in the input zone the law predicts a sufficiently small output zone, people call the law itself deterministic.
  • Complex systems are not always composed from parts that are in themselves complex. Complex systems can be built by arranging essentially very simpler parts that are put together in complex configurations.
  • Each of the simpler part may be governed by a deterministic law. However, when the input-output zones are considered for the complex system taken as a whole, the system behaviour may show exponential increase in the size of the output zone. In such a case, the system must be described as indeterministic.
  • Indeterministic systems still are based on causal laws. Hence, with appropriate methods and abstractions (including mathematical ones), they can be made to reveal the underlying causality. One useful theory is that of probability. The theory turns the supposed disadvantage (a large number of interacting bodies) on its head, and uses limiting values of relative frequencies, i.e., probability. The probability theory itself is based on causality, and so are indeterministic systems.
  • Systems may be deterministic or indeterministic, and in the latter case, they may be described using the maths of probability theory. Physical laws are always causal. However, if they have to be described using the terms of determinism or indeterminism, then we will have to say that they are always deterministic. After all, if the physical laws showed exponentially large output zone even when simpler systems were considered, they could not be formulated or regarded as laws.

In conclusion: Physical laws are always causal. They may also always be regarded as being deterministic. However, if systems are complex, then even if the laws governing their simpler parts were all deterministic, the system behavior itself may turn out to be indeterministic. Some indeterministic systems can be well described using the theory of probability. The theory of probability itself is based on the idea of causality albeit measures defined over large number of instances are taken, thereby exploiting the fact that there are far too many objects interacting in a complex manner.


A song I like:

(Hindi) “ho re ghungaroo kaa bole…”
Singer: Lata Mangeshkar
Music: R. D. Burman
Lyrics: Anand Bakshi

 

 

Determinism, Indeterminism, and the nature of the laws of physics…

The laws of physics are causal, but this fact does not imply that they can be used to determine each and everything that you feel should be determinable using them, in each and every context in which they apply. What matters is the nature of the laws themselves. The laws of physics are not literally boundless; nothing in the universe is. They are logically bounded by the kind of abstractions they are.


Let’s take a concrete example.

Take a bottle, pour a little water and detergent in it, shake well, and have fun watching the Technicolor wonder which results. Bubbles form; they show resplendent colors. Then, some of them shrink, others grow, one or two of them eventually collapse, and the rest of the network of the similar bubbles adjusts itself. The process continues.

Looking at it in an idle way can be fun: those colorful tendrils of water sliding over those thin little surfaces, those fascinating hues and geometric patterns… That dynamics which unfolds at such a leisurely pace. … Just watching it all can make for a neat time-sink—at least for a while.

But merely having fun watching bubbles collapse is not physics. Physics proper begins with a lawful description of the many different aspects of the visually evident spectacle—be it the explanation as to how those unreal-looking colors come about, or be it an explanation of the mechanisms involved in their shrinkage or growth, and eventual collapse, … Or, a prediction of exactly which bubble is going to collapse next.


For now, consider the problem of determining, given a configuration of some bubbles at a certain time t_0, predicting exactly which bubble is going to collapse next, and why… To solve this problem, we have to study many different processes involved in the bubbles dynamics…


Theories do exist to predict various aspects of the bubble collapse process taken individually. Further it should also be possible to combine them together. The explanation involves such theories as: the Navier-Stokes equations, which govern the flow of soap water in the thin films, and of the motion of the air entrapped within each bubble; the phenomenon of film-breakage, which can involves either the particles-based approaches to modeling of fluids, or, if you insist on a continuum theory, then theories of crack initiatiation and growth in thin lamella/shells; the propagation of a film-breakage, and the propagation of the stress-strain waves associated with the process; and also, theories concerning how the collapse process gets preferentially localized to only one (or at most few) bubbles, which involves again, nonlinear theories from mechanics of materials, and material science.

All these are causal theories. It should also be possible to “throw them together” in a multi-physics simulation.

But even then, they still are not very useful in predicting which bubble in your particular setup is going to collapse next, and when, because not the combination of these theories, but even each theory involved is too complex.

The fact of the matter is, we cannot in practice predict precisely which bubble is going to collapse next.


The reason for our inability to predict, in this context, does not have to do just with the precision of the initial conditions. It’s also their vastness.

And, the known, causal, physical laws which tell us how a sensitive dependence on the smallest changes in the initial conditions deterministically leads to such huge changes in the outcomes, that using these laws to actually make a prediction squarely lies outside of our capacity to calculate.

Even simple (first- or second-order) variations to the initial conditions specified over a very small part of the network can have repercussions for the entire evolution, which is ultimately responsible for predicting which bubble is going to collapse next.


I mention this situation because it is amply illustrative of a special kind of problems which we encounter in physics today. The laws governing the system evolution are known. Yet, in practice, they cannot be applied for performing calculations in every given situation which falls under their purview. The reason for this circumstance is that the very paradigm of formulating physical laws falls short. Let me explain what I mean very briefly here.


All physical laws are essentially quantitative in nature, and can be thought of as “functions,” i.e., as mappings from a specific set of inputs to a specific set of outputs. Since the universe is lawful, given a certain set of values for the inputs, and the specific function (the law) which does the mapping, the output is  uniquely determined. Such a nature of the physical laws has come to be known as determinism. (At least that’s what the working physicist understands by the term “determinism.”) The initial conditions together with the governing equation completely determine the final outcome.

However, there are situations in which even if the laws themselves are deterministic, they still cannot practically be put to use in order to determine the outcomes. One such a situation is what we discussed above: the problem of predicting the next bubble which will collapse.

Where is the catch? It is in here:

When you say that a physical law performs a mapping from a set of input to the set of outputs, this description is actually vastly more general than what appears on the first sight.

Consider another example, the law of Newtonian gravity.

If you have only two bodies interacting gravitationally, i.e., if all other bodies in the universe can be ignored (because their influence on the two bodies is negligibly small in the problem as posed), then the set of the required input data is indeed very small. The system itself is simple because there is only one interaction going on—that between two bodies. The simplicity of the problem design lends a certain simplicity to the system behaviour: If you vary the set of input conditions slightly, then the output changes proportionately. In other words, the change in the output is proportionately small. The system configuration itself is simple enough to ensure that such a linear relation exists between the variations in the input, and the variations in the output. Therefore, in practice, even if you specify the input conditions somewhat loosely, your prediction does err, but not too much. Its error too remains bounded well enough that we can say that the description is deterministic. In other words, we can say that the system is deterministic, only because the input–output mapping is robust under minor changes to the input.

However, if you consider the N-body problem in all its generality, then the very size of the input set itself becomes big. Any two bodies from the N-bodies form a simple interacting pair. But the number of pairs is large, and worse, they all are coupled to each other through the positions of the bodies. Further, the nonlinearities involved in such a problem statement work to take away the robustness in the solution procedure. Not only is the size of the input set big, the end-solution too varies wildly with even a small variation in the input set. If you failed to specify even a single part of the input set to an adequate precision, then the predicted end-state can deterministically become very wildly different. The input–output mapping is deterministic—but it is not robust under minor changes to the input. A small change in the initial angle can lead to an object ending up either on this side of the Sun or that. Small changes produce big variations in predictions.

So, even if the mapping is known and is known to work (deterministically), you still cannot use this “knowledge” to actually perform the mapping from the input to the output, because the mapping is not robust to small variations in the input.

Ditto, for the soap bubbles collapse problem. If you change the initial configuration ever so slightly—e.g., if there was just a small air current in one setup and a more perfect stillness in another setup, it can lead to wildly different predictions as to which bubble will collapse next.

What holds for the N-body problem also holds for the bubble collapse process. The similarity is that these are complex systems. Their parts may be simple, and the physical laws governing such simple parts may be completely deterministic. Yet, there are a great many parts, and they all are coupled together such that a small change in one part—one interaction—gets multiplied and felt in all other parts, making the overall system fragile to small changes in the input specifications.

Let me add: What holds for the N-body problem or the bubble-collapse problems also holds for quantum-mechanical measurement processes. The latter too involves a large number of parts that are nonlinearly coupled to each other, and hence, forms a complex system. It is as futile to expect that you would be able to predict the exact time of the next atomic decay as it is to expect that you will be able to predict which bubble collapses next.

But all the above still does not mean that the laws themselves are indeterministic, or that, therefore, physical theories must be regarded as indeterministic. The complex systems may not be robust. But they still are composed from deterministically operating parts. It’s just that the configuration of these parts is far too complex.


It would be far too naive to think that it should be possible to make exact (non-probabilistic) predictions even in the context of systems that are nonlinear, and whose parts are coupled together in complex manner. It smacks of harboring irresponsible attitudes to take this naive expectation as the standard by which to judge physical theories, and since they don’t come up to your expectations, to jump to the conclusion that physical theories are indeterministic in nature. That’s what has happened to QM.

It should have been clear to the critic of the science that the truth-hood of an assertion (or a law, or a theory) is not subject to whether every complex manner in which it can be recombined with other theoretical elements leads to robust formulations or not. The truth-hood of an assertion is subject only to whether it by itself and in its own context corresponds to reality or not.

The error involved here is similar, in many ways, to expecting that if a substance is good for your health in a certain quantity, then it must be good in every quantity, or that if two medicines are without side-effects when taken individually, they must remain without any harmful effects even when taken in any combination—that there should be no interaction effects. It’s the same error, albeit couched in physicists’ and philosopher’s terms, that’s all.

… Too much emphasis on “math,” and too little an appreciation of the qualitative features, only helps in compounding the error.


A preliminary version of this post appeared as a comment on Roger Schlafly’s blog, here [^]. Schlafly has often wondered about the determinism vs. indeterminism issue on his blog, and often, seems to have taken positions similar to what I expressed here in this post.

The posting of this entry was motivated out of noticing certain remarks in Lee Smolin’s response to The Edge Question, 2013 edition [^], which I recently mentioned at my own blog, here [^].


A song I like:
(Marathi) “kaa re duraavaa, kaa re abolaa…”
Singer: Asha Bhosale
Music: Sudhir Phadke
Lyrics: Ga. Di. Madgulkar


[In the interests of providing better clarity, this post shall undergo further unannounced changes/updates over the due course of time.

Revision history:
2019.04.24 23:05: First published
2019.04.25 14:41: Posted a fully revised and enlarged version.
]

The self-field, and the objectivity of the classical electrostatic potentials: my analysis

This blog post continues from my last post, and has become overdue by now. I had promised to give my answers to the questions raised last time. Without attempting to explain too much, let me jot down the answers.


1. The rule of omitting the self-field:

This rule arises in electrostatic interactions basically because the Coulombic field has a spherical symmetry. The same rule would also work out in any field that has a spherical symmetry—not just the inverse-separation fields, and not necessarily only the singular potentials, though Coulombic potentials do show both these latter properties too.

It is helpful here to think in terms of not potentials but of forces.

Draw any arbitrary curve. Then, hold one end of the curve fixed at the origin, and sweep the curve through all possible angles around it, to get a 3D field. This 3D field has a spherical symmetry, too. Hence, gradients at the same radial distance on opposite sides of the origin are always equal and opposite.

Now you know that the negative gradient of potential gives you a force. Since for any spherical potential the gradients are equal and opposite, they cancel out. So, the forces cancel out to.

Realize here that in calculating the force exerted by a potential field on a point-particle (say an electron), the force cannot be calculated in reference to just one point. The very definition of the gradient refers to two different points in space, even if they be only infinitesimally separated apart. So, the proper procedure is to start with a small sphere centered around the given electron, calculate the gradients of the potential field at all points on the surface of this sphere, calculate the sum of the forces exerted on the domain contained inside the spherical surface by these forces, and then take the sphere to the limiting of vanishing size. The sum of the forces thus exerted is the net force acting on that point-particle.

In case of the Coulombic potentials, the forces thus calculated on the surface of any sphere (centered on that particle) turn out to be zero. This fact holds true for spheres of all radii. It is true that gradients (and forces) progressively increase as the size of the sphere decreases—in fact they increase without all bounds for singular potentials. However, the aforementioned cancellation holds true at any stage in the limiting process. Hence, it holds true for the entirety of the self-field.

In calculating motions of a given electron, what matters is not whether its self-field exists or not, but whether it exerts a net force on the same electron or not. The self-field does exist (at least in the sense explained later below) and in that sense, yes, it does keep exerting forces at all times, also on the same electron. However, due to the spherical symmetry, the net force that the field exerts on the same electron turns out to be zero.

In short:

Even if you were to include the self-field in the calculations, if the field is spherically symmetric, then the final net force experienced by the same electron would still have no part coming from its own self-field. Hence, to economize calculations without sacrificing exactitude in any way, we discard it out of considerations.The rule of omitting the self-field is just a matter of economizing calculations; it is not a fundamental law characterizing what field may be objectively said to exist. If the potential field due to other charges exists, then, in the same sense, the self-field too exists. It’s just that for the motions of the self field-generating electron, it is as good as non-existent.

However, the question of whether a potential field physically exists or not, turns out to be more subtle than what might be thought.


2. Conditions for the objective existence of electrostatic potentials:

It once again helps to think of forces first, and only then of potentials.

Consider two electrons in an otherwise empty spatial region of an isolated system. Suppose the first electron (e_1), is at a position x_1, and a second electron e_2 is at a position x_2. What Coulomb’s law now says is that the two electrons mutually exert equal and opposite forces on each other. The magnitudes of these forces are proportional to the inverse-square of the distance which separates the two. For the like charges, the forces is repulsive, and for unlike charges, it is attractive. The amount of the electrostatic forces thus exerted do not depend on mass; they depend only the amounts of the respective charges.

The potential energy of the system for this particular configuration is given by (i) arbitrarily assigning a zero potential to infinite separation between the two charges, and (ii) imagining as if both the charges have been brought from infinity to their respective current positions.

It is important to realize that the potential energy for a particular configuration of two electrons does not form a field. It is merely a single number.

However, it is possible to imagine that one of the charges (say e_1) is held fixed at a point, say at \vec{r}_1, and the other charge is successively taken, in any order, at every other point \vec{r}_2 in the infinite domain. A single number is thus generated for each pair of (\vec{r}_1, \vec{r}_2). Thus, we can obtain a mapping from the set of positions for the two charges, to a set of the potential energy numbers. This second set can be regarded as forming a field—in the 3D space.

However, notice that thus defined, the potential energy field is only a device of calculations. It necessarily refers to a second charge—the one which is imagined to be at one point in the domain at a time, with the procedure covering the entire domain. The energy field cannot be regarded as a property of the first charge alone.

Now, if the potential energy field U thus obtained is normalized by dividing it with the electric charge of the second charge, then we get the potential energy for a unit test-charge. Another name for the potential energy obtained when a unit test-charge is used for the second charge is: the electrostatic potential (denoted as V).

But still, in classical mechanics, the potential field also is only a device of calculations; it does not exist as a property of the first charge, because the potential energy itself does not exist as a property of that fixed charge alone. What does exist is the physical effect that there are those potential energy numbers for those specific configurations of the fixed charge and the test charge.

This is the reason why the potential energy field, and therefore the electrostatic potential of a single charge in an otherwise empty space does not exist. Mathematically, it is regarded as zero (though it could have been assigned any other arbitrary, constant value.)

Potentials arise only out of interaction of two charges. In classical mechanics, the charges are point-particles. Point-particles exist only at definite locations and nowhere else. Therefore, their interaction also must be seen as happening only at the locations where they do exist, and nowhere else.

If that is so, then in what sense can we at all say that potential energy (or electrostaic potential) field does physically exist?

Consider a single electron in an isolated system, again. Assume that its position remains fixed.

Suppose there were something else in the isolated system—-something—some object—every part of which undergoes an electrostatic interaction with the fixed (first) electron. If this second object were to be spread all over the domain, and if every part of it were able to interact with the fixed charge, then we could say that the potential energy field exists objectively—as an attribute of this second object. Ditto, for the electric potential field.

Note three crucially important points, now.

2.1. The second object is not the usual classical object.

You cannot regard the second (spread-out) object as a mere classical charge distribution. The reason is this.

If the second object were to be actually a classical object, then any given part of it would have to electrostatically interact with every other part of itself too. You couldn’t possibly say that a volume element in this second object interacts only with the “external” electron. But if the second object were also to be self-interacting, then what would come to exist would not be the simple inverse-distance potential field energy, in reference to that single “external” electron. The space would be filled with a very weird field. Admitting motion to the property of the local charge in the second object, every locally present charge would soon redistribute itself back “to” infinity (if it is negative), or it all would collapse into the origin (if the charge on the second object were to be positive, because the fixed electron’s field is singular). But if we allow no charge redistributions, and the second field were to be classical (i.e. capable of self-interacting), then the field of the second object would have to have singularities everywhere. Very weird. That’s why:

If you want to regard the potential field as objectively existing, you have to also posit (i.e. postulate) that the second object itself is not classical in nature.

Classical electrostatics, if it has to regard a potential field as objectively (i.e. physically) existing, must therefore come to postulate a non-classical background object!

2.2. Assuming you do posit such a (non-classical) second object (one which becomes “just” a background object), then what happens when you introduce a second electron into the system?

You would run into another seeming contradiction. You would find that this second electron has no job left to do, as far as interacting with the first (fixed) electron is concerned.

If the potential field exists objectively, then the second electron would have to just passively register the pre-existing potential in its vicinity (because it is the second object which is doing all the electrostatic interactions—all the mutual forcings—with the first electron). So, the second electron would do nothing of consequence with respect to the first electron. It would just become a receptacle for registering the force being exchanged by the background object in its local neighborhood.

But the seeming contradiction here is that as far as the first electron is concerned, it does feel the potential set up by the second electron! It may be seen to do so once again via the mediation of the background object.

Therefore, both electrons have to be simultaneously regarded as being active and passive with respect to each other. They are active as agents that establish their own potential fields, together with an interaction with the background object. But they also become passive in the sense that they are mere point-masses that only feel the potential field in the background object and experience forces (accelerations) accordingly.

The paradox is thus resolved by having each electron set up a field as a result of an interaction with the background object—but have no interaction with the other electron at all.

2.3. Note carefully what agency is assigned to what object.

The potential field has a singularity at the position of that charge which produces it. But the potential field itself is created either by the second charge (by imagining it to be present at various places), or by a non-classical background object (which, in a way, is nothing but an objectification of the potential field-calculation procedure).

Thus, there arises a duality of a kind—a double-agent nature, so to speak. The potential energy is calculated for the second charge (the one that is passive), in the sense that the potential energy is relevant for calculating the motion of the second charge. That’s because the self-field cancels out for all motions of the first charge. However,

 The potential energy is calculated for the second charge. But the field so calculated has been set up by the first (fixed) charge. Charges do not interact with each other; they interact only with the background object.

2.4. If the charges do not interact with each other, and if they interact only with the background object, then it is worth considering this question:

Can’t the charges be seen as mere conditions—points of singularities—in the background object?

Indeed, this seems to be the most reasonable approach to take. In other words,

All effects due to point charges can be regarded as field conditions within the background object. Thus, paradoxically enough, a non-classical distributed field comes to represent the classical, massive and charged point-particles themselves. (The mass becomes just a parameter of the interactions of singularities within a 3D field.) The charges (like electrons) do not exist as classical massive particles, not even in the classical electrostatics.


3. A partly analogous situation: The stress-strain fields:

If the above situation seems too paradoxical, it might be helpful to think of the stress-strain fields in solids.

Consider a horizontally lying thin plate of steel with two rigid rods welded to it at two different points. Suppose horizontal forces of mutually opposite directions are applied through the rods (either compressive or tensile). As you know, as a consequence, stress-strain fields get set up in the plate.

From an external viewpoint, the two rods are regarded as interacting with each other (exchanging forces with each other) via the medium of the plate. However, in reality, they are interacting only with the object that is the plate. The direct interaction, thus, is only between a rod and the plate. A rod is forced, it interacts with the plate, the plate sets up stress-strain field everywhere, the local stress-field near the second rod interacts with it, and the second rod registers a force—which balances out the force applied at its end. Conversely, the force applied at the second rod also can be seen as getting transmitted to the first rod via the stress-strain field in the plate material.

There is no contradiction in this description, because we attribute the stress-strain field to the plate itself, and always treat this stress-strain field as if it came into existence due to both the rods acting simultaneously.

In particular, we do not try to isolate a single-rod attribute out of the stress-strain field, the way we try to ascribe a potential to the first charge alone.

Come to think of it, if we have only one rod and if we apply force to it, no stress-strain field would result (i.e. neglecting inertia effects of the steel plate). Instead, the plate would simply move in the rigid body mode. Now, in solid mechanics, we never try to visualize a stress-strain field associated with a single rod alone.

It is a fallacy of our thinking that when it comes to electrostatics, we try to ascribe the potential to the first charge, and altogether neglect the abstract procedure of placing the test charge at various locations, or the postulate of positing a non-classical background object which carries that potential.

In the interest of completeness, it must be noted that the stress-strain fields are tensor fields (they are based on the gradients of vector fields), whereas the electrostatic force-field is a vector field (it is based on the gradient of the scalar potential field). A more relevant analogy for the electrostatic field, therefore might the forces exchanged by two point-vortices existing in an ideal fluid.


4. But why bother with it all?

The reason I went into all this discussion is because all these issues become important in the context of quantum mechanics. Even in quantum mechanics, when you have two charges that are interacting with each other, you do run into these same issues, because the Schrodinger equation does have a potential energy term in it. Consider the following situation.

If an electrostatic potential is regarded as being set up by a single charge (as is done by the proton in the nucleus of the hydrogen atom), but if it is also to be regarded as an actually existing and spread out entity (as a 3D field, the way Schrodinger’s equation assumes it to be), then a question arises: What is the role of the second charge (e.g., that of the electron in an hydrogen atom)? What happens when the second charge (the electron) is represented quantum mechanically? In particular:

What happens to the potential field if it represents the potential energy of the second charge, but the second charge itself is now being represented only via the complex-valued wavefunction?

And worse: What happens when there are two electrons, and both interacting with each other via electrostatic repulsions, and both are required to be represented quantum mechanically—as in the case of the electrons in an helium atom?

Can a charge be regarded as having a potential field as well as a wavefunction field? If so, what happens to the point-specific repulsions as are mandated by the Coulomb law? How precisely is the V(\vec{r}_1, \vec{r}_2) term to be interpreted?

I was thinking about these things when these issues occurred to me: the issue of the self-field, and the question of the physical vs. merely mathematical existence of the potential fields of two or more quantum-mechanically interacting charges.

Guess I am inching towards my full answers. Guess I have reached my answers, but I need to have them verified with some physicists.


5. The help I want:

As a part of my answer-finding exercises (to be finished by this month-end), I might be contacting a second set of physicists soon enough. The issue I want to learn from them is the following:

How exactly do they do computational modeling of the helium atom using the finite difference method (FDM), within the context of the standard (mainstream) quantum mechanics?

That is the question. Once I understand this part, I would be done with the development of my new approach to understanding QM.

I do have some ideas regarding the highlighted question. It’s just that I want to have these ideas confirmed from some physicists before (or along-side) implementing the FDM code. So, I might be approaching someone—possibly you!

Please note my question once again. I don’t want to do perturbation theory. I would also like to avoid the variational method.

Yes, I am very comfortable with the finite element method, which is basically based on the variational calculus. So, given a good (detailed enough) account of the variational method for the He atom, it should be possible to translate it into the FEM terms.

However, ideally, what I would like to do is to implement it as an FDM code.

So there.

Please suggest good references and / or people working on this topic, if you know any. Thanks in advance.


A song I like:

[… Here I thought that there was no song that Salil Chowdhury had composed and I had not listened to. (Well, at least when it comes to his Hindi songs). That’s what I had come to believe, and here trots along this one—and that too, as a part of a collection by someone! … The time-delay between my first listening to this song, and my liking it, was zero. (Or, it was a negative time-delay, if you refer to the instant that the first listening got over). … Also, one of those rare occasions when one is able to say that any linear ordering of the credits could only be random.]

(Hindi) “mada bhari yeh hawaayen”
Music: Salil Chowdhury
Lyrics: Gulzaar
Singer: Lata Mangeshkar

 

The rule of omitting the self-field in calculations—and whether potentials have an objective existence or not

There was an issue concerning the strictly classical, non-relativistic electricity which I was (once again) confronted with, during my continuing preoccupation with quantum mechanics.

Actually, a small part of this issue had occurred to me earlier too, and I had worked through it back then.

However, the overall issue had never occurred to me with as much of scope, generality and force as it did last evening. And I could not immediately resolve it. So, for a while, especially last night, I unexpectedly found myself to have become very confused, even discouraged.

Then, this morning, after a good night’s rest, everything became clear right while sipping my morning cup of tea. Things came together literally within a span of just a few minutes. I want to share the issue and its resolution with you.

The question in question (!) is the following.


Consider 2 (or N) number of point-charges, say electrons. Each electron sets up an electrostatic (Coulombic) potential everywhere in space, for the other electrons to “feel”.

As you know, the potential set up by the i-th electron is:
V_i(\vec{r}_i, \vec{r}) = \dfrac{1}{4 \pi \epsilon_0} \dfrac{Q_i}{|\vec{r} - \vec{r}_i|}
where \vec{r}_i is the position vector of the i-th electron, \vec{r} is any arbitrary point in space, and Q_i is the charge of the i-th electron.

The potential energy associated with some other (j-th) electron being at the position \vec{r}_j (i.e. the energy that the system acquires in bringing the two electrons from \infty to their respective positions some finite distance apart), is then given as:
U_{ij}(\vec{r}_i, \vec{r}_j) = \dfrac{1}{4 \pi \epsilon_0} \dfrac{Q_i\,Q_j}{|\vec{r}_j - \vec{r}_i|}

The notation followed here is the following: In U_{ij}, the potential field is produced by the i-th electron, and the work is done by the j-th electron against the i-th electron.

Symmetrically, the potential energy for this configuration can also be expressed as:
U_{ji}(\vec{r}_j, \vec{r}_i) = \dfrac{1}{4 \pi \epsilon_0} \dfrac{Q_j\,Q_i}{|\vec{r}_i - \vec{r}_j|}

If a system has only two charges, then its total potential energy U can be expressed either as U_{ji} or as U_{ij}. Thus,
U = U_{ji} = U_{ij}

Similarly, for any pair of charges in an N-particle system, too. Therefore, the total energy of an N-particle system is given as:
U = \sum\limits_{i}^{N} \sum\limits_{j = i+1}^{N} U_{ij}

The issue now is this: Can we say that the total potential energy U has an objective existence in the physical world? Or is it just a device of calculations that we have invented, just a concept from maths that has no meaningful physical counterpart?

(A side remark: Energy may perhaps exist as an attribute or property of something else, and not necessarily as a separate physical object by itself. However, existence as an attribute still is an objective existence.)

The reason to raise this doubt is the following.


When calculating the motion of the i-th charge, we consider only the potentials V_j produced by the other charges, not the potential produced by the given charge V_i itself.

Now, if the potential produced by the given charge (V_i) also exists at every point in space, then why does it not enter the calculations? How does its physical efficacy get evaporated away? And, symmetrically: The motion of the j-th charge occurs as if V_j had physically evaporated away.

The issue generalizes in a straight-forward manner. If there are N number of charges, then for calculating the motion of a given i-th charge, the potential fields of all other charges are considered operative. But not its own field.

How can motion become sensitive to only a part of the total potential energy existing at a point even if the other part also exists at the same point? That is the question.


This circumstance seems to indicate as if there is subjectivity built deep into the very fabric of classical mechanics. It is as if the universe just knows what a subject is going to calculate, and accordingly, it just makes the corresponding field mystically go away. The universe—the physical universe—acts as if it were changing in response to what we choose to do in our mind. Mind you, the universe seems to change in response to not just our observations (as in QM), but even as we merely proceed to do calculations. How does that come to happen?… May be the whole physical universe exists only in our imagination?

Got the point?


No, my confusion was not as pathetic as that in the previous paragraph. But I still found myself being confused about how to account for the fact that an electron’s own field does not enter the calculations.

But it was not all. A non-clarity on this issue also meant that there was another confusing issue which also raised its head. This secondary issue arises out of the fact that the Coulombic potential set up by any point-charge is singular in nature (or at least approximately so).

If the electron is a point-particle and if its own potential “is” \infty at its position, then why does it at all get influenced by the finite potential of any other charge? That is the question.

Notice, the second issue is most acute when the potentials in question are singular in nature. But even if you arbitrarily remove the singularity by declaring (say by fiat) a finite size for the electron, thereby making its own field only finitely large (and not infinite), the above-mentioned issue still remains. So long as its own field is finite but much, much larger than the potential of any other charge, the effects due to the other charges should become comparatively less significant, perhaps even negligibly small. Why does this not happen? Why does the rule instead go exactly the other way around, and makes those much smaller effects due to other charges count, but not the self-field of the very electron in question?


While thinking about QM, there was a certain point where this entire gamut of issues became important—whether the potential has an objective existence or not, the rule of omitting the self-field while calculating motions of particles, the singular potential, etc.

The specific issue I was trying to think through was: two interacting particles (e.g. the two electrons in the helium atom). It was while thinking on this problem that this problem occurred to me. And then, it also led me to wonder: what if some intellectual goon in the guise of a physicist comes along, and says that my proposal isn’t valid because there is this element of subjectivity to it? This thought occurred to me with all its force only last night. (Or so I think.) And I could not recall seeing a ready-made answer in a text-book or so. Nor could I figure it out immediately, at night, after a whole day’s work. And as I failed to resolve the anticipated objection, I progressively got more and more confused last night, even discouraged.

However, this morning, it all got resolved in a jiffy.


Would you like to give it a try? Why is it that while calculating the motion of the i-th charge, you consider the potentials set up by all the rest of the charges, but not its own potential field? Why this rule? Get this part right, and all the philosophical humbug mentioned earlier just evaporates away too.

I would wait for a couple of days or so before coming back and providing you with the answer I found. May be I will write another post about it.


Update on 2019.03.16 20:14 IST: Corrected the statement concerning the total energy of a two-electron system. Also simplified the further discussion by couching it preferably in terms of potentials rather than energies (as in the first published version), because a Coulombic potential always remains anchored in the given charge—it doesn’t additionally depend on the other charges the way energy does. Modified the notation to reflect the emphasis on the potentials rather than energy.


A song I like:

[What else? [… see the songs section in the last post.]]
(Hindi) “woh dil kahaan se laaoon…”
Singer: Lata Mangeshkar
Music: Ravi
Lyrics: Rajinder Kishen


A bit of a conjecture as to why Ravi’s songs tend to be so hummable, of a certain simplicity, especially, almost always based on a very simple rhythm. My conjecture is that because Ravi grew up in an atmosphere of “bhajan”-singing.

Observe that it is in the very nature of music that it puts your mind into an abstract frame of mind. Observe any singer, especially the non-professional ones (or the ones who are not very highly experienced in controlling their body-language while singing, as happens to singers who participate in college events or talent shows).

When they sing, their eyes seem to roll in a very peculiar manner. It seems random but it isn’t. It’s as if the eyes involuntarily get set in the motions of searching for something definite to be found somewhere, as if the thing to be found would be in the concrete physical space outside, but within a split-second, the eyes again move as if the person has realized that nothing corresponding is to be found in the world out there. That’s why the eyes “roll away.” The same thing goes on repeating, as the singer passes over various words, points of pauses, nuances, or musical phrases.

The involuntary motions of the eyes of the singer provide a window into his experience of music. It’s as if his consciousness was again and again going on registering a sequence of two very fleeting experiences: (i) a search for something in the outside world corresponding to an inner experience felt in the present, and immediately later, (ii) a realization (and therefore the turning away of the eyes from an initially picked up tentative direction) that nothing in the outside world would match what was being searched for.

The experience of music necessarily makes you realize the abstractness of itself. It tends to make you realize that the root-referents of your musical experience lie not in a specific object or phenomenon in the physical world, but in the inner realm, that of your own emotions, judgments, self-reflections, etc.

This nature of music makes it ideally suited to let you turn your attention away from the outside world, and has the capacity or potential to induce a kind of a quiet self-reflection in you.

But the switch from the experience of frustrated searches into the outside world to a quiet self-reflection within oneself is not the only option available here. Music can also induce in you a transitioning from those unfulfilled searches to a frantic kind of an activity: screams, frantic shouting, random gyrations, and what not. In evidence, observe any piece of modern American / Western pop-music.

However, when done right, music can also induce a state of self-reflection, and by evoking certain kind of emotions, it can even lead to a sense of orderliness, peace, serenity. To make this part effective, such a music has to be simple enough, and orderly enough. That’s why devotional music in the refined cultural traditions is, as a rule, of a certain kind of simplicity.

The experience of music isn’t the highest possible spiritual experience. But if done right, it can make your transition from the ordinary experience to a deep, profound spiritual experience easy. And doing it right involves certain orderliness, simplicity in all respects: tune, tone, singing style, rhythm, instrumental sections, transitions between phrases, etc.

If you grow up listening to this kind of a music, your own music in your adult years tends to reflect the same qualities. The simplicity of rhythm. The alluringly simple tunes. The “hummability quotient.” (You don’t want to focus on intricate patterns of melody in devotional music; you want it to be so simple that minimal mental exertion is involved in rendering it, so that your mental energy can quietly transition towards your spiritual quest and experiences.) Etc.

I am not saying that the reason Ravi’s music is so great is because he listened his father sing “bhajan”s. If this were true, there would be tens of thousands of music composers having talents comparable to Ravi’s. But the fact is that Ravi was a genius—a self-taught genius, in fact. (He never received any formal training in music ever.) But what I am saying is that if you do have the musical ability, having this kind of a family environment would leave its mark. Definitely.

Of course, this all was just a conjecture. Check it out and see if it holds or not.

… May be I should convert this “note” in a separate post by itself. Would be easier to keep track of it. … Some other time. … I have to work on QM; after all, exactly only half the month remains now. … Bye for now. …