A prediction. Also, a couple of wishes…

The Prediction:

While the week of the Nobel prizes always has a way to generate a sense of suspense, of excitement, and even of wonderment, as far as I am concerned, the one prize that does that in the real sense to me is, of course, the Physics Nobel. … Nothing compares to it. Chemistry can come close, but not always. [And, Mr. Nobel was a good guy; he instituted no prize for maths! [LOL!]]. …

The Physics Nobel is the King of all awards in all fields, as far as I am concerned.

That’s why, this year, I have this feeling of missing something. … The reason is, this year’s Physics Nobel is already “known”; it will go to Kip Thorne and pals.

[I will not eat crow even if they don’t get it. [… Unless, of course, you know a delicious recipe or two for the same, and also demonstrate it to me, complete with you sampling it first.]]

But yes, Kip Thorne richly deserves it, and he will get it. That’s the prediction. I wanted to slip it in even if only few hours before the announcement arrives.

I will update this post later right today/tonight, after the Physics Nobel is actually announced.


Now let me come to the couple of wishes, as mentioned in the title. I will try to be brief. [Have been too busy these days… OK. Will let you know. We are going in for accreditation, and so, it’s been all heavy documentation-related work for the past few months. Despite all that hard-work, we still have managed to slip a bit on the progress, and so, currently, we are working on all week-ends and on most public holidays, too. [Yes, we came to work yesterday.] So, it’s only somehow that I manage to find some time to slip in this post—which is written absolutely on the fly, with no second thoughts or re-reading before posting. … So excuse me if there is a bit of lack of balance in the presentation, and of course, typos etc.]


Wish # 1:

The first wish is that a Physics Nobel should go, in a combined way, to what actually are two separate, but very intimately related, and two most significant advances in the physical understanding of man: (i) chaos theory (including fractals) and (ii)catastrophe theory.

If you don’t like the idea of two ideas being given a single Nobel, then, well, let me put it this way: the Nobel should be given for achieving the most significant advancements in the field of the differential nonlinearities, for a very substantial progress in the physical understanding of the behaviour of nonlinear physical systems, forging pathways for predictive capacity.

Let me emphasize, this has been one of the most significant advances in physics in the last century. No, saying so is emphatically not a hyperbole.

And, yes, it’s an advance in physics, primarily, and then, also in maths—but only secondarily.

… It’s unfortunate that an advancement which has been this remarkable never did register as such with most of the S&T “manpower”, esp., engineers and practical designers. It’s also unfortunate that the twin advancement arrived on the scene at the time of bad cultural (even epistemological) trends, and so, the advancements got embedded in a fabric of hyperbole, even nonsense.

But regardless of the cultural tones in which the popular presentations of these advancements (esp. of the chaos theory) got couched, taken as a science, the studies of nonlinearity in the physical systems has been a very, very, original, and a very, very creative, advancement. It needs to be recognized as such.

That way, I don’t much care for what it helped produce on the maths side of it. But yes, even a not very extraordinarily talented undergraduate in CS (one with a special interest in deterministic methods in cryptography) would be able to tell you how much light got shone on their discipline because of the catastrophe and chaos theories.

The catastrophe theory has been simply marvellous in one crucial aspect: it actually pushed the boundaries of what is understood by the term: mathematics. The theory has been daring enough to propose, literally for the first time in the entire history of mankind, a well-refined qualitative approach to an infinity of quantitative processes taken as a group.

The distinction between the qualitative and the quantitative had kept philosophers (and laymen) pre-occupied for millenia. But the nonlinear theory has been the first theoretical approach that tells you how to spot and isolate the objective bases for distinguishing what we consider as the qualitative changes.

Remove the understanding given by the nonlinear theory—by the catastrophe-theoretical approach—and, once in the domain of the linear theory, the differences in kind immediately begin to appear as more or less completely arbitrary. There is no place in theory for them—the qualitative distinctions are external to the theory because a linear system always behaves exactly the same with any quantitative changes made, at any scale, to any of the controlling parameters. Since in the linear theory the qualitative changes are not produced from within the theory itself, such distinctions must be imported into it out of some considerations that are in principle external to the theory.

People often confuse such imports with “applications.” No, when it comes to the linear theory, it’s not the considerations of applications which can be said to be driving any divisions of qualitative changes. The qualitative distinctions are basically arbitrary in a linear theory. It is important to realize that that usual question: “Now where do we draw the line?” is basically absolutely superfluous once you are within the domain of the linear systems. There are no objective grounds on the basis of which such distinctions can be made.

Studies of the nonlinear phenomena sure do precede the catastrophe and the chaos theories. Even in the times before these two theories came on the scene, applied physicists would think of certain ideas such as differences of regimes, esp. in the areas like fluid dynamics.

But to understand the illuminating power of the nonlinear theory, just catch hold of an industrial CFD guy (or a good professor of fluid dynamics from a good university [not, you know, from SPPU or similar universities]), and ask him whether there can be any deeper theoretical significance to the procedure of the Buckingham Pi Theorem, to the necessity, in his art (or science) of having to use so many dimensionless numbers. (Every mechanical/allied engineering undergraduate has at least once in life cursed the sheer number of them.) The competent CFD guy (or the good professor) would easily be at a loss. Then, toss a good book on the Catastrophe Theory to him, leave him alone for a couple of weeks or may be a month, return, and raise the same question again. He now may or may not have a very good, “flowy” sort of a verbal answer ready for you. But one look at his face would tell you that it has now begun to reflect a qualitatively different depth of physical understanding even as he tries to tackle that question in his own way. That difference arises only because of the Catastrophe Theory.

As to the Chaos Theory (and I club the fractal theory right in it), more number of people are likely to know about it, and so, I don’t have to wax a lot (whether eloquently or incompetently). But let me tell you one thing.

Feigenbaum’s discovery of the universal constant remains, to my mind, one of the most ingenious advancements in the entire history of physics, even of science. Especially, given the experimental equipment with which he made that discovery—a handheld HP Calculator (not a computer) in the seventies (or may be in the sixties)! … And yes, getting to that universal constant was, if you ask me, an act of discovery, and not of invention. (Invention was very intimately involved in the process; but the overall act and the end-product was one of discovery.)

So, here is a wish that these fundamental studies of the nonlinear systems get their due—the recognition they so well deserve—in the form of a Physics Nobel.

…And, as always, the sooner the better!


Wish # 2:

The second wish I want to put up here is this: I wish there was some commercial/applied artist, well-conversant with the “art” of supplying illustrations for a physics book, who also was available for a long-term project I have in mind.

To share a bit: Years ago (actually, almost two decades ago, in 1998 to be precise), I had made a suggestion that novels by Ayn Rand be put in the form of comics. As far as I was concerned, the idea was novel (i.e. new). I didn’t know at that time that a comics-book version of The Fountainhead had already been conceived of by none other than Ayn Rand herself, and it, in fact, had also been executed. In short, there was a comics-book version of The Fountainhead. … These days, I gather, they are doing something similar for Atlas Shrugged.

If you think about it, my idea was not at all a leap of imagination. Newspapers (even those in India) have been carrying comic strips for decades (right since before my own childhood), and Amar Chitrakatha was coming of age just when I was. (It was founded in 1967 by Mr. Pai.)

Similarly, conceiving of a comics-like book for physics is not at all a very creative act of imagination. In fact, it is not even original. Everyone knows those books by that Japanese linguistics group, the books on topics like the Fourier theory.

So, no claim of originality here.

It’s just that for my new theory of QM, I find that the format of a comics-book would be most suitable. (And what the hell if physicists don’t take me seriously because I put it in this form first. Who cares what they think anyway!)

Indeed, I would even like to write/produce some comics books on maths topics, too. Topics like grads, divs, curls, tensors, etc., eventually. … Guess I will save that part for keeping me preoccupied during my retirement. BTW, my retirement is not all that far away; it’s going to be here pretty soon, right within just five years from now. (Do one thing: Check out what I was writing, say in 2012 on this blog.)

But the one thing I would like write/produce right in the more immediate future is: the comics book on QM, putting forth my new approach.

So, in the closing, here is a request. If you know some artist (or an engineer/physicist with fairly good sketching/computer-drawing skills), and has time at hand, and has the capacity to stay put in a sizeable project, and won’t ask money for it (a fair share in the royalty is a given—provided we manage to find a publisher first, that is), then please do bring this post to his notice.

 


A Song I Like:

And, finally, here is the Marathi song I had promised you the last time round. It’s a fusion of what to my mind is one of the best tunes Shrinivas Khale ever produced, and the best justice to the words and the tunes by the singer. Imagine any one else in her place, and you will immediately come to know what I mean. … Pushpa Pagdhare easily takes this song to the levels of the very best by the best, including Lata Mangeshkar. [Oh yes, BTW, congrats are due to the selection committe of this year’s Lata Mangeshkar award, for selecting Pushpa Pagdhare.]

(Marathi) “yeuni swapnaat maajhyaa…”
Singer: Pushpa Pagdhare
Music: Shrinivas Khale
Lyrics: Devakinandan Saraswat

[PS: Note: I am going to come back and add an update once this year’s Physics Nobel is announced. At that time (or tonight) I will also try to streamline this post.

Then, I will be gone off the blogging for yet another couple of weeks or so—unless it’s a small little “kutty” post of the “Blog-Filler” kind or two.]

 

Advertisements

Shaken, because of a stir

We have demonstrably been shaken here on earth, because of a stir in the cosmos.

The measured peak strain was 10^{-21} [^].

For comparison: In our college lab, we typically measure strains of magnitude like 10^{-3} or at the most 10^{-4}. (Google search on “yield strain of mild steel” does not throw up any directly relevant page, but it does tell you that the yield strength of mild steel is 450 MPa, and all mechanical (civil/metallurgical/aero/etc.) engineers know that Young’s modulus for mild steel is 210 GPa. … You get the idea. …)


Einstein got it wrong twice, but at least eventually, he did correct himself.

But other physicists (and popular science writers, and blog-writers), even after getting a full century to think over the issue, still continue to commit blunders. They continue using terms like “distortions of spacetime.” As if, space and time themselves repeatedly “bent” (or, to use a euphemism, got “distorted”) together, to convey the force through “vacuum.”

It’s not a waving of the “spacetime” through a vaccum, stupid! It’s just the splashing of the aether!!


The Indian credit is, at the most, 1.3%.

If it could be taken as 3.7%, then the number of India’s science Nobels would also have to increase dramatically. Har Gobind Singh Khorana, for instance, would have to be included. The IAS-/MPSC-/scientist-bureaucrats “serving” during my childhood-days had made sure to include Khorana’s name in our school-time science text-books, even though Khorana had been born only in (the latter-day) Pakistan, and even if he himself had publicly given up on both Pakistan and India—which, even as children, we knew! Further, from whatever I recall of me and all my classmates (from two different schools), we the (then) children (and, later, teen-agers) were neither inspired nor discouraged even just a tiny bit by either Khorana’s mention or his only too willing renunciation of the Indian citizenship. The whole thing seemed too remote to us. …

Overall, Khorana’s back-ground would be a matter of pride etc. only to those bureaucrats and possibly Delhi intellectuals (and also to politicians, of course, but to a far lesser extent than is routinely supposed). Not to others.

Something similar seems to be happening now. (Something very similar did happen with the moon orbiter; check out the page 1 headlines in the government gazettes like Times of India and Indian Express.)

Conclusion: Some nut-heads continue to run the show from Delhi even today—even under the BJP.

Anyway, the reason I said “at most” 1.3 % is because, even though I lack a knowledge of the field, I do know that there’s a difference between 1976, and, say, 1987. This fact by itself sets a natural upper bound on the strength of the Indian contribution.

BTW, I don’t want to take anything away from Prof. Dhurandhar (and from what I have informally gathered here in Pune, he is a respectable professor doing some good work), but reading through the media reports (about how he was discouraged 30 years ago, and how he has now been vindicated today etc.) made me wonder: Did Dhurandhar go without a job for years because of his intellectual convictions—the way I have been made to go, before, during and after my PhD?

As far as I am concerned, the matter ends there.

At least it should—I mean, this post should end right here. But, OK, let me make an exception, and note a bit about one more point.


The experimental result has thrown the Nobel bookies out of business for this year—at least to a great part.

It is certain that Kip Thorne will get the 2016 Physics Nobel. There is no uncertainty on that count.

It is also nearly as certain that he will only co-win the prize—there will be others to share the credit (and obviously deservingly so). The only question remaining is, will it be just one more person or will it be two more (Nobel rules allow only max 3, I suppose), what will be their prize proportions, and who those other person(s) will be (apart from Thorne). So, as far as the bettors and the bookies are concerned, they are not entirely out of the pleasure and the business, yet.

Anyway, my point here was twofold: (i) The 2016 Physics Nobel will not be given for any other discovery, and (ii) Kip Thorne will be one of the (richly deserving) recipients.


[E&OE]

 

Squeezing in a post before the 2015 gets over…

The first purpose of this post is to own up a few nasty things that I did. Recently I posted some nasty comments on iMechanica. I got as randomly nasty in them as I could.

My overwhelming mental state at that time was to show just a (mild) example of the “received” things, of what I have had to endure, for years. In fact what I had to endure has been far worse than mere comments on the ‘net, but I tried to keep it aside even in that nasty moment. … Yes, that’s right. I have resisted putting out nastiness, in response to that which I have gotten over years (for more than a decade-and-a-half!). I have not succeeded always, and this recent instance is one of that infrequent times I could not.

On the other hand, check the better side of my record at the same forum, I mean iMechanica: Hundreds of comments on more than two hundred threads.

Yes, I do regret my recent “response.” But if you ask me, the issue has gone beyond the considerations of justifiable-ness and otherwise. Not in the sense that moral principles don’t apply for such things (exchanges on the Internet), but in this sense: Let us change the chairs. I mean to say: Even if someone else in my position were to write ten-folds more such comments, and if I on the other hand were to be in a general observer’s position, then: the current state of the world is such that I would no longer have a right to expect any better coming off him. If anything else better were at all to come off him, I may or may not be grateful (it would depend on the specific value of that better thing to me). But I would certainly put it on account of his graciousness.

There.

All the same, I will sure try to improve my own record, and try to avoid such nastiness in future, esp. at iMechanica (a forum that has given me so much of intellectual satisfaction, and has extended so much friendliness). [No, if you ask me, the matter involves such bad context that I won’t include this resolve as a part of my NYR, even though I will, as I said, try even more to observe it.]


I also have been down with a bout of cold and cough for the past 2–3 days, now barely recovering, and therefore don’t expect to join in the New Year’s party anywhere.


My NYR remains as before (namely, to share my newer thoughts on QM). There is an addition in fact.

I have found that I can now resolve the issue: “Stress or strain: which one is more fundamental?” It is one of the most widely read threads at iMechanica (current count: 135,000+), and though a lot of knowledgeable and eminent mechanicians participated in it, at the natural cessation of any further real discussion several years ago, the matter had still remained unresolved [^].

I now have found a logic to take the issue to (what I think is) its definite resolution. I intend to share it in the new year. That’s my NYR no. 2 (the no. 1 being about QM). I am also thinking of writing a journal paper about this stress-strain issue—for no reason other than the fact it has gone unresolved for such a long time, despite such wide publicity. It clearly has gone beyond the stage of an informal discussion, and does deserve, IMO, a place in an archival journal. For the same reason, give me time—months, if I decide to include some simulations, or at least several weeks, if I decide to share only the bare logic, before I come back.

Yes, as usual, you can always ask me in person, and I could give the gist of my answer right on the fly. It’s only the aspect of writing down a proper archival journal paper that takes time.


A Song I Like:

It’s being dropped for this time round.

I cannot pick out which one of the poems of Mangesh Padgaonkar I love better. He passed away just yesterday, at a ripe age of 86.

Just like most any Marathi-knowing person of my age (and so many of other ages as well), I have had a deeply personal kind of an appeal for Mangesh Padgaonkar’s poetry. It’s so rich, so lovely, and yet so simple of language—and so lucid. He somehow had a knack to spot the unusual, the dramatic in a very commonplace circumstance, and bring it out lucidly, using exactly the right shade of some very lyrical words. At other times, he also had the knack to take something very astounding or dramatic but to put it in such simple (almost homely) sort of way, that even a direct dramatic statement would cause no real offence. (I here remember his “salaam.”) And, even if he always was quite modern in terms of some basic attitudes (try putting his “yaa janmaavara” as “nothing but the next” in a series of the poems expressing the received Indian wisdom, or compare his “shraavaNaata ghana neeLaa” with the best of any naturalistic poet), his poetry still somehow remained so deeply rooted in the Marathi culture. Speaking of the latter, yes, though he was modern, one could still very easily put him in the series of “bhaa. raa. taambe,” “baalakavee,” and others. Padgaonkar could very well turn out to be the last authentic exponent of the Marathi Enlightenment.

All in all, at least in my mind, he occupies the same place as that reserved for the likes of V. S. Khandekar and “kusumaagraj.” People like these don’t just point out the possibilities, in some indirect and subtle ways, they actually help you mould your own sense of what words like art and literature mean.

If I were to be my younger self, my only regret would be that he never received the “dynaanapeetha” award. Today, I both (i) know better, and (ii) no longer expect such things to necessarily come to a pass.

Anyway, here is a prayer that may his soul find “sadgati.”


Alright now, let me conclude.

Here is wishing you all the best for a happy and prosperous new year!

[May be another pass, “the next year”…]

[E&OE]

The Infosys Prizes, 2015

I realized that it was the end of November the other day, and it somehow struck me that I should check out if there has been any news on the Infosys prizes for this year. I vaguely recalled that they make the yearly announcements sometime in the last quarter of a year.

Turns out that, although academic bloggers whose blogs I usually check out had not highlighted this news, the prizes had already been announced right in mid-November [^].

It also turns out also that, yes, I “know”—i.e., have in-person chatted (exactly once) with—one of the recipients. I mean Professor Dr. Umesh Waghmare, who received this year’s award for Engineering Sciences [^]. I had run into him in an informal conference once, and have written about it in a recent post, here [^].

Dr. Waghmare is a very good choice, if you ask me. His work is very neat—I mean both the ideas which he picks out to work on, and the execution on them.

I still remember his presentation at that informal conference (where I chatted with him). He had talked about a (seemingly) very simple idea, related to graphene [^]—its buckling.

Here is my highly dumbed down version of that work by Waghmare and co-authors. (It’s dumbed down a lot—Waghmare et al’s work was on buckling, not bending. But it’s OK; this is just a blog, and guess I have a pretty general sort of a “general readership” here.)

Bending, in general, sets up a combination of tensile and compressive stresses, which results in the setting up of a bending moment within a beam or a plate. All engineers (except possibly for the “soft” branches like CS and IT) study bending quite early in their undergraduate program, typically in the second year. So, I need not explain its analysis in detail. In fact, in this post, I will write only a common-sense level description of the issue. For technical details, look up the Wiki articles on bending [^] and buckling [^] or Prof. Bower’s book [^].

Assuming you are not an engineer, you can always take a longish rubber eraser, hold it so that its longest edge is horizontal, and then bend it with a twist of your fingers. If the bent shape is like an inverted ‘U’, then, the inner (bottom) surface has got compressed, and the outer (top) surface has got stretched. Since compression and tension are opposite in nature, and since the eraser is a continuous body of a finite height, it is easy to see that there has to be a continuous surface within the volume of the eraser, some half-way through its height, where there can be no stresses. That’s because, the stresses change sign in going from the compressive stress at the bottom surface to the tensile stresses on the top surface. For simplicity of mathematics, this problem is modeled as a 1D (line) element, and therefore, in elasticity theory, this actual 2D surface is referred to as the neutral axis (i.e. a line).

The deformation of the eraser is elastic, which means that it remains in the bent state only so long as you are applying a bending “force” to it (actually, it’s a moment of a force).

The classical theory of bending allows you to relate the curvature of the beam, and the bending moment applied to it. Thus, knowing bending moment (or the applied forces), you can tell how much the eraser should bend. Or, knowing how much the eraser has curved, you can tell how big a pair of fforces would have to be applied to its ends. The theory works pretty well; it forms of the basis of how most buildings are designed anyway.

So far, so good. What happens if you bend, not an eraser, but a graphene sheet?

The peculiarity of graphene is that it is a single atom-thick sheet of carbon atoms. Your usual eraser contains billions and billions of layers of atoms through its thickness. In contrast, the thickness of a graphene sheet is entirely accounted for by the finite size of the single layer of atoms. And, it is found that unlike thin paper, the graphen sheet, even if it is the the most extreme case of a thin sheet, actually does offer a good resistance to bending. How do you explain that?

The naive expectation is that something related to the interatomic bonding within this single layer must, somehow, produce both the compressive and tensile stresses—and the systematic variation from the locally tensile to the locally compressive state as we go through this thickness.

Now, at the scale of single atoms, quantum mechanical effects obviously are dominant. Thus, you have to consider those electronic orbitals setting up the bond. A shift in the density of the single layer of orbitals should correspond to the stresses and strains in the classical mechanics of beams and plates.

What Waghmare related at that conference was a very interesting bit.

He calculated the stresses as predicted by (in my words) the changed local density of the orbitals, and found that the forces predicted this way are way smaller than the experimentally reported values for graphene sheets. In other words, the actual graphene is much stiffer than what the naive quantum mechanics-based model shows—even if the model considers those electronic orbitals. What is the source of this additional stiffness?

He then showed a more detailed calculation (i.e. a simulation), and found that the additional stiffness comes from a quantum-mechanical interaction between the portions of the atomic orbitals that go off transverse to the plane of the graphene sheet.

Thus, suppose a graphene sheet is initially held horizontally, and then bent to form an inverted U-like curvature. According to Waghmare and co-authros, you now have to consider not just the orbital cloud between the atoms (i.e. the cloud lying in the same plane as the graphene sheet) but also the orbital “petals” that shoot vertically off the plane of the graphene. Such petals are attached to nucleus of each C atom; they are a part of the electronic (or orbital) structure of the carbon atoms in the graphene sheet.

In other words, the simplest engineering sketch for the graphene sheet, as drawn in the front view, wouldn’t look like a thin horizontal line; it would also have these small vertical “pins” at the site of each carbon atom, overall giving it an appearance rather like a fish-bone.

What happens when you bend the graphene sheet is that on the compression side, the orbital clouds for these vertical petals run into each other. Now, you know that an orbital cloud can be loosely taken as the electronic charge density, and that the like charges (e.g. the negatively charged electrons) repel each other. This inter-electronic repulsive force tends to oppose the bending action. Thus, it is the petals’ contribution which accounts for the additional stiffness of the graphene sheet.

I don’t know whether this result was already known to the scientific community back then in 2010 or not, but in any case, it was a very early analysis of bending of graphene. Further, as far as I could tell, the quality of Waghmare’s calculations and simulations was very definitely superlative. … You work in a field (say computational modeling) for some time, and you just develop a “nose” of sorts, that allows you to “smell” a superlative calculation from an average one. Particularly so, if your own skills on the calculations side are rather on the average, as happens to be the case with me. (My strengths are in conceptual and computational sides, but not on the mathematical side.) …

So, all in all, it’s a very well deserved prize. Congratulations, Dr. Waghmare!

 


A Song I Like:

(The so-called “fusion” music) “Jaisalmer”
Artists: Rahul Sharma (Santoor) and Richard Clayderman (Piano)
Album: Confluence

[As usual, may be one more editing pass…]

[E&OE]