Shaken, because of a stir

We have demonstrably been shaken here on earth, because of a stir in the cosmos.

The measured peak strain was 10^{-21} [^].

For comparison: In our college lab, we typically measure strains of magnitude like 10^{-3} or at the most 10^{-4}. (Google search on “yield strain of mild steel” does not throw up any directly relevant page, but it does tell you that the yield strength of mild steel is 450 MPa, and all mechanical (civil/metallurgical/aero/etc.) engineers know that Young’s modulus for mild steel is 210 GPa. … You get the idea. …)


Einstein got it wrong twice, but at least eventually, he did correct himself.

But other physicists (and popular science writers, and blog-writers), even after getting a full century to think over the issue, still continue to commit blunders. They continue using terms like “distortions of spacetime.” As if, space and time themselves repeatedly “bent” (or, to use a euphemism, got “distorted”) together, to convey the force through “vacuum.”

It’s not a waving of the “spacetime” through a vaccum, stupid! It’s just the splashing of the aether!!


The Indian credit is, at the most, 1.3%.

If it could be taken as 3.7%, then the number of India’s science Nobels would also have to increase dramatically. Har Gobind Singh Khorana, for instance, would have to be included. The IAS-/MPSC-/scientist-bureaucrats “serving” during my childhood-days had made sure to include Khorana’s name in our school-time science text-books, even though Khorana had been born only in (the latter-day) Pakistan, and even if he himself had publicly given up on both Pakistan and India—which, even as children, we knew! Further, from whatever I recall of me and all my classmates (from two different schools), we the (then) children (and, later, teen-agers) were neither inspired nor discouraged even just a tiny bit by either Khorana’s mention or his only too willing renunciation of the Indian citizenship. The whole thing seemed too remote to us. …

Overall, Khorana’s back-ground would be a matter of pride etc. only to those bureaucrats and possibly Delhi intellectuals (and also to politicians, of course, but to a far lesser extent than is routinely supposed). Not to others.

Something similar seems to be happening now. (Something very similar did happen with the moon orbiter; check out the page 1 headlines in the government gazettes like Times of India and Indian Express.)

Conclusion: Some nut-heads continue to run the show from Delhi even today—even under the BJP.

Anyway, the reason I said “at most” 1.3 % is because, even though I lack a knowledge of the field, I do know that there’s a difference between 1976, and, say, 1987. This fact by itself sets a natural upper bound on the strength of the Indian contribution.

BTW, I don’t want to take anything away from Prof. Dhurandhar (and from what I have informally gathered here in Pune, he is a respectable professor doing some good work), but reading through the media reports (about how he was discouraged 30 years ago, and how he has now been vindicated today etc.) made me wonder: Did Dhurandhar go without a job for years because of his intellectual convictions—the way I have been made to go, before, during and after my PhD?

As far as I am concerned, the matter ends there.

At least it should—I mean, this post should end right here. But, OK, let me make an exception, and note a bit about one more point.


The experimental result has thrown the Nobel bookies out of business for this year—at least to a great part.

It is certain that Kip Thorne will get the 2016 Physics Nobel. There is no uncertainty on that count.

It is also nearly as certain that he will only co-win the prize—there will be others to share the credit (and obviously deservingly so). The only question remaining is, will it be just one more person or will it be two more (Nobel rules allow only max 3, I suppose), what will be their prize proportions, and who those other person(s) will be (apart from Thorne). So, as far as the bettors and the bookies are concerned, they are not entirely out of the pleasure and the business, yet.

Anyway, my point here was twofold: (i) The 2016 Physics Nobel will not be given for any other discovery, and (ii) Kip Thorne will be one of the (richly deserving) recipients.


[E&OE]

 

Squeezing in a post before the 2015 gets over…

The first purpose of this post is to own up a few nasty things that I did. Recently I posted some nasty comments on iMechanica. I got as randomly nasty in them as I could.

My overwhelming mental state at that time was to show just a (mild) example of the “received” things, of what I have had to endure, for years. In fact what I had to endure has been far worse than mere comments on the ‘net, but I tried to keep it aside even in that nasty moment. … Yes, that’s right. I have resisted putting out nastiness, in response to that which I have gotten over years (for more than a decade-and-a-half!). I have not succeeded always, and this recent instance is one of that infrequent times I could not.

On the other hand, check the better side of my record at the same forum, I mean iMechanica: Hundreds of comments on more than two hundred threads.

Yes, I do regret my recent “response.” But if you ask me, the issue has gone beyond the considerations of justifiable-ness and otherwise. Not in the sense that moral principles don’t apply for such things (exchanges on the Internet), but in this sense: Let us change the chairs. I mean to say: Even if someone else in my position were to write ten-folds more such comments, and if I on the other hand were to be in a general observer’s position, then: the current state of the world is such that I would no longer have a right to expect any better coming off him. If anything else better were at all to come off him, I may or may not be grateful (it would depend on the specific value of that better thing to me). But I would certainly put it on account of his graciousness.

There.

All the same, I will sure try to improve my own record, and try to avoid such nastiness in future, esp. at iMechanica (a forum that has given me so much of intellectual satisfaction, and has extended so much friendliness). [No, if you ask me, the matter involves such bad context that I won’t include this resolve as a part of my NYR, even though I will, as I said, try even more to observe it.]


I also have been down with a bout of cold and cough for the past 2–3 days, now barely recovering, and therefore don’t expect to join in the New Year’s party anywhere.


My NYR remains as before (namely, to share my newer thoughts on QM). There is an addition in fact.

I have found that I can now resolve the issue: “Stress or strain: which one is more fundamental?” It is one of the most widely read threads at iMechanica (current count: 135,000+), and though a lot of knowledgeable and eminent mechanicians participated in it, at the natural cessation of any further real discussion several years ago, the matter had still remained unresolved [^].

I now have found a logic to take the issue to (what I think is) its definite resolution. I intend to share it in the new year. That’s my NYR no. 2 (the no. 1 being about QM). I am also thinking of writing a journal paper about this stress-strain issue—for no reason other than the fact it has gone unresolved for such a long time, despite such wide publicity. It clearly has gone beyond the stage of an informal discussion, and does deserve, IMO, a place in an archival journal. For the same reason, give me time—months, if I decide to include some simulations, or at least several weeks, if I decide to share only the bare logic, before I come back.

Yes, as usual, you can always ask me in person, and I could give the gist of my answer right on the fly. It’s only the aspect of writing down a proper archival journal paper that takes time.


A Song I Like:

It’s being dropped for this time round.

I cannot pick out which one of the poems of Mangesh Padgaonkar I love better. He passed away just yesterday, at a ripe age of 86.

Just like most any Marathi-knowing person of my age (and so many of other ages as well), I have had a deeply personal kind of an appeal for Mangesh Padgaonkar’s poetry. It’s so rich, so lovely, and yet so simple of language—and so lucid. He somehow had a knack to spot the unusual, the dramatic in a very commonplace circumstance, and bring it out lucidly, using exactly the right shade of some very lyrical words. At other times, he also had the knack to take something very astounding or dramatic but to put it in such simple (almost homely) sort of way, that even a direct dramatic statement would cause no real offence. (I here remember his “salaam.”) And, even if he always was quite modern in terms of some basic attitudes (try putting his “yaa janmaavara” as “nothing but the next” in a series of the poems expressing the received Indian wisdom, or compare his “shraavaNaata ghana neeLaa” with the best of any naturalistic poet), his poetry still somehow remained so deeply rooted in the Marathi culture. Speaking of the latter, yes, though he was modern, one could still very easily put him in the series of “bhaa. raa. taambe,” “baalakavee,” and others. Padgaonkar could very well turn out to be the last authentic exponent of the Marathi Enlightenment.

All in all, at least in my mind, he occupies the same place as that reserved for the likes of V. S. Khandekar and “kusumaagraj.” People like these don’t just point out the possibilities, in some indirect and subtle ways, they actually help you mould your own sense of what words like art and literature mean.

If I were to be my younger self, my only regret would be that he never received the “dynaanapeetha” award. Today, I both (i) know better, and (ii) no longer expect such things to necessarily come to a pass.

Anyway, here is a prayer that may his soul find “sadgati.”


Alright now, let me conclude.

Here is wishing you all the best for a happy and prosperous new year!

[May be another pass, “the next year”…]

[E&OE]

The Infosys Prizes, 2015

I realized that it was the end of November the other day, and it somehow struck me that I should check out if there has been any news on the Infosys prizes for this year. I vaguely recalled that they make the yearly announcements sometime in the last quarter of a year.

Turns out that, although academic bloggers whose blogs I usually check out had not highlighted this news, the prizes had already been announced right in mid-November [^].

It also turns out also that, yes, I “know”—i.e., have in-person chatted (exactly once) with—one of the recipients. I mean Professor Dr. Umesh Waghmare, who received this year’s award for Engineering Sciences [^]. I had run into him in an informal conference once, and have written about it in a recent post, here [^].

Dr. Waghmare is a very good choice, if you ask me. His work is very neat—I mean both the ideas which he picks out to work on, and the execution on them.

I still remember his presentation at that informal conference (where I chatted with him). He had talked about a (seemingly) very simple idea, related to graphene [^]—its buckling.

Here is my highly dumbed down version of that work by Waghmare and co-authors. (It’s dumbed down a lot—Waghmare et al’s work was on buckling, not bending. But it’s OK; this is just a blog, and guess I have a pretty general sort of a “general readership” here.)

Bending, in general, sets up a combination of tensile and compressive stresses, which results in the setting up of a bending moment within a beam or a plate. All engineers (except possibly for the “soft” branches like CS and IT) study bending quite early in their undergraduate program, typically in the second year. So, I need not explain its analysis in detail. In fact, in this post, I will write only a common-sense level description of the issue. For technical details, look up the Wiki articles on bending [^] and buckling [^] or Prof. Bower’s book [^].

Assuming you are not an engineer, you can always take a longish rubber eraser, hold it so that its longest edge is horizontal, and then bend it with a twist of your fingers. If the bent shape is like an inverted ‘U’, then, the inner (bottom) surface has got compressed, and the outer (top) surface has got stretched. Since compression and tension are opposite in nature, and since the eraser is a continuous body of a finite height, it is easy to see that there has to be a continuous surface within the volume of the eraser, some half-way through its height, where there can be no stresses. That’s because, the stresses change sign in going from the compressive stress at the bottom surface to the tensile stresses on the top surface. For simplicity of mathematics, this problem is modeled as a 1D (line) element, and therefore, in elasticity theory, this actual 2D surface is referred to as the neutral axis (i.e. a line).

The deformation of the eraser is elastic, which means that it remains in the bent state only so long as you are applying a bending “force” to it (actually, it’s a moment of a force).

The classical theory of bending allows you to relate the curvature of the beam, and the bending moment applied to it. Thus, knowing bending moment (or the applied forces), you can tell how much the eraser should bend. Or, knowing how much the eraser has curved, you can tell how big a pair of fforces would have to be applied to its ends. The theory works pretty well; it forms of the basis of how most buildings are designed anyway.

So far, so good. What happens if you bend, not an eraser, but a graphene sheet?

The peculiarity of graphene is that it is a single atom-thick sheet of carbon atoms. Your usual eraser contains billions and billions of layers of atoms through its thickness. In contrast, the thickness of a graphene sheet is entirely accounted for by the finite size of the single layer of atoms. And, it is found that unlike thin paper, the graphen sheet, even if it is the the most extreme case of a thin sheet, actually does offer a good resistance to bending. How do you explain that?

The naive expectation is that something related to the interatomic bonding within this single layer must, somehow, produce both the compressive and tensile stresses—and the systematic variation from the locally tensile to the locally compressive state as we go through this thickness.

Now, at the scale of single atoms, quantum mechanical effects obviously are dominant. Thus, you have to consider those electronic orbitals setting up the bond. A shift in the density of the single layer of orbitals should correspond to the stresses and strains in the classical mechanics of beams and plates.

What Waghmare related at that conference was a very interesting bit.

He calculated the stresses as predicted by (in my words) the changed local density of the orbitals, and found that the forces predicted this way are way smaller than the experimentally reported values for graphene sheets. In other words, the actual graphene is much stiffer than what the naive quantum mechanics-based model shows—even if the model considers those electronic orbitals. What is the source of this additional stiffness?

He then showed a more detailed calculation (i.e. a simulation), and found that the additional stiffness comes from a quantum-mechanical interaction between the portions of the atomic orbitals that go off transverse to the plane of the graphene sheet.

Thus, suppose a graphene sheet is initially held horizontally, and then bent to form an inverted U-like curvature. According to Waghmare and co-authros, you now have to consider not just the orbital cloud between the atoms (i.e. the cloud lying in the same plane as the graphene sheet) but also the orbital “petals” that shoot vertically off the plane of the graphene. Such petals are attached to nucleus of each C atom; they are a part of the electronic (or orbital) structure of the carbon atoms in the graphene sheet.

In other words, the simplest engineering sketch for the graphene sheet, as drawn in the front view, wouldn’t look like a thin horizontal line; it would also have these small vertical “pins” at the site of each carbon atom, overall giving it an appearance rather like a fish-bone.

What happens when you bend the graphene sheet is that on the compression side, the orbital clouds for these vertical petals run into each other. Now, you know that an orbital cloud can be loosely taken as the electronic charge density, and that the like charges (e.g. the negatively charged electrons) repel each other. This inter-electronic repulsive force tends to oppose the bending action. Thus, it is the petals’ contribution which accounts for the additional stiffness of the graphene sheet.

I don’t know whether this result was already known to the scientific community back then in 2010 or not, but in any case, it was a very early analysis of bending of graphene. Further, as far as I could tell, the quality of Waghmare’s calculations and simulations was very definitely superlative. … You work in a field (say computational modeling) for some time, and you just develop a “nose” of sorts, that allows you to “smell” a superlative calculation from an average one. Particularly so, if your own skills on the calculations side are rather on the average, as happens to be the case with me. (My strengths are in conceptual and computational sides, but not on the mathematical side.) …

So, all in all, it’s a very well deserved prize. Congratulations, Dr. Waghmare!

 


A Song I Like:

(The so-called “fusion” music) “Jaisalmer”
Artists: Rahul Sharma (Santoor) and Richard Clayderman (Piano)
Album: Confluence

[As usual, may be one more editing pass…]

[E&OE]

The 2015 Physics Nobel, the neutrino, and the quantum entanglement

Okey dokey, so…. Quite a few important things have happened since I wrote my last post. Let me jot them down here, in the order of the decreasing importance:

  1. The teaching part of our UG term has (finally) ended.
  2. The QM papers mentioning Alice, Bob, entanglement or Bell’s inequalities did not get the Nobel recognition, not even this year—and if you ask me, for a very, very good set of reasons, but more on it later; I am not done with my list yet.
  3. Takaaki Kajita and Arthur McDonald did get the Physics Nobel for this year, “for the discovery of neutrino oscillations, which shows that neutrinos have mass.” The official popular explanation is here [(.PDF) ^]
  4. Youyou Tu got half of the Nobel prize for Physiology or Medicine this year, “for her discoveries concerning a novel therapy against Malaria.” The press release is here [^]. … Is it just me or you too failed to notice any “China-tva-vadi” thumping his chest in “pride” of the ancient Chinese medical system?

OK. Now, a few personal comments, in the reverse order of the list.


Given my interests, the list could have ended at point no. 3 above. It’s just that, given the emphasis that the supposedly ancient “vimaanashaastra” happened to receive in India over the last year, I was compelled me to add the fourth point too.


I don’t understand Kajita and McDonald’s work really well. That’s why the link I have provided above goes only to the popular explanation, not to the advanced information.

However, that doesn’t mean that I knew nothing about it. For instance, I could appreciate the importance of the phrase “mass eigenstates.” … It’s just that I don’t “get” this theory to the same extent that I get, say, Dan Schechtman’s work for his 2011 Chemistry Nobel.

That way, I have known about neutrinos for quite some time, may be for some 25 years or more. In fact, there also is a small personal story about this word that I could share here.

If you are an Indian of my generation, you would know that it would be impossible for you to ever forget the very first radio which your family had got (it probably was the one on which you listened to your Binaca Geetmaalaa every Wednesday evening), the first (and probably the only) bicycle your father bought for you (the one which you were riding in your bell-bottoms, when the thoughts of somehow having to impress that first crush of yours passed you by), the first PC that you bought…

Oh well, I am jumping ahead of myself. Correction. It should be: The first PC whose OS you installed. …

Chances are high that you got to install—nay, you had to re-install—DOS or Windows on your office or lab machine quite a few times, and chances are even higher that you therefore had become an expert of Windows installation way before you could save enough money to buy your first PC…. You can’t forget things like these.

So, in my case, while the first time I ever touched a PC was way back right in 1983 (I was in the EDP department at Mukand back then—a trainee engineer), the first time I got the opportunity to format a HDD and install a fresh OS on it was as late as in the late-July of 1996. (I happened to buy my first PC just a few months later on.) I was already a software engineer back then. The company I then worked with (Frontier Software) was a startup, and so, there were no policies or manuals concerning what names were to be given to an office PC. So, I was free to choose any which name I liked. While some others had chosen names like “koala” or “viper,” or “bramha” or “shiva,” when it came my turn, as the VGA-resolution screen on a small (13”) CRT monitor kept staring at me, the name I ended up choosing in the heat of the moment was: “neutrino.”

“`Neutrino’? Why `neutrino’? What is `neutrino’?”—the colleague who was watching over my shoulder spontaneously wondered aloud. He had been to California on company work some time earlier, and therefore, my guess at that time was that he perhaps could be guessing that “neutrino” could be some Mexican/Spanish/Italian name or expression. I, therefore, hastened to clarify what neutrino really meant (already wondering aloud why this guy had never heard of the term (even if he would maintain that he was into reading popular science books)). … No, he wasn’t thinking Mexican/Spanish/Italian; he was just wondering if I had made up that name. Alright, following my clarification that some billions of these neutrinos were passing through his body every second—even right at that moment, sitting in the comfort of a office, and right while our conversation was going on… Hearing this left him, say, dazed, sort of.

This instance conclusively proves that I have always known about neutrinos.

My “knowledge” about them hasn’t changed much over the past two decades.

… Anyway, my knowledge of QM has…  Two things, and let me end this section about neutrinos.

(i) If they could hunt for just a few (like just tens of) neutrinos out of billions of billions of them, why can’t they build a relatively much less costly equipment to test the hypothesis that the transient dynamics of the far simpler quantum particles—photons and electrons—isn’t quite the same as that put forth by the mainstream QM? [I have made a prediction about photons, and even if my particular published theory turns out to be wrong, any new theory that I replace it with will always have this tiny difference from the mainstream QM, because my theorization is local, whereas the mainstream QM is global.]

(ii) Can photon have mass? … Think about it. It’s not so stupid a suggestion as it may initially sound. (Of course, this point is nowhere as important as the first one concerning the transient dynamics).


Many, many people have been at least anticipating (if not also “predicting,” or “supporting”) a physics Nobel to something related to quantum entanglement. By “quantum entanglement,” I mean things like: Bell’s inequalities, or Clauser/Aspect/ Zeilinger, or Alice and Bob, … you get the idea.

I am happy that none of these ideas/experiments got to get a Nobel, also this time round. [Even if a lot of Americans were rooting for such an outcome!]

No, I have no enmity towards any of them, not even Bob; I never did. In fact, I carry a ton of a respect for them.

My point is: their work (or at least the work they have done so far) doesn’t merit a physics Nobel. Why?

Because, Nobels for the same theoretical framework have been given to many people already, say, to Planck, Einstein, Compton, Bohr, de Broglie, Heisenberg, Schrodinger, Pauli, Dirac, Born, et al. The theoretical framework of QM (and unfortunately, even today, it still remains only a framework, not a theory) as built by these pioneers—and as systematized by John von Neumann—already fully contains the same physics that Bell highlighted.

In other words, Bell’s principle is only a sort of a “corollary” (rather, an implication of the already known physics)—it’s not an independent “theorem” (rather, a discovery of new fact, phenomenon, or principle of physics).

As to the experimentalists working on entanglement, if you take the sum-totality of what they have reported, there is not a single surprise. Forget surprise, there isn’t even an unproved hunch here. For a contrasting example, see what Lubos Motl describes in case of neutrinos, here [^]. Unlike neutrinos, when it comes to quantum entanglement, there literally is nothing new. There has been nothing new, over all these decades—except for the addition of a lot of “press,” esp. in the USA, and esp. in the recent times. [Incidentally, you may want to note that Motl supports string theory—which, IMO, basically has always been, and remains, a post ex facto theory.]

The Nobel committee has once again demonstrated that it has a very solid grasp of what an advance of physics means.

An advance of/in physics is to be contrasted from “mere” deductions of corollaries, no matter how brilliant these may be.

About a century ago, they (the Nobel committee members back then) had shown a very robust sense regarding what the terms like “discovery” and “physics” mean, when they had skipped over the relativity theory even in the act of honoring Einstein—they had instead picked up his work on the photoelectric effect.

The parallels are unmistakable. Relativity theory was “sexy” those days; quantum entanglement is “sexy” today. Relativity theory was only a corollary of James Clerk Maxwell’s synthesis (at least the special relativity certainly was just that); quantum entanglement is just a corollary of the mainstream QM. And, while Maxwell had not pointed out relativity, entanglement indeed was pointed out by Schrodinger himself, and that too as early as before EPR had even thought of writing down their paper. So, the parallels—and the degradation in the American and European cultural standards over time—are quite obvious.

Still, what is to be noted here is the fact that the respective Nobel committees, separated by about a century, in both cases chose not to be taken in by the hype of the day. Congratulations are due to them!

And of course, as far as I am concerned, congratulations are also due to Kajita and McDonald.


BTW, Einstein does not become a lesser physicist because he never got a Nobel for the relativity theory. [And people do argue that he didn’t invent the relativity theory either; cf. Roger Schlafly.] So what? Even if relativity couldn’t possibly have qualified for a Nobel, Einstein sure did. He did a lot of work in quantum mechanics. He explained the photoelectric effect; he explained the temperature dependence of the heat capacity of solids using the quantum hypothesis; he didn’t merely explain but predicted the LASER using the QM decades before they were built (1917, vs. 1947–52). If you ask me, any single one of these achievements would have amply qualified him for a physics Nobel. I don’t say it out of deference to the general physics community. You can see it independently. Just put any of these advances in juxtaposition to some of the other undisputed Nobels, e.g., Jean Perrin’s demonstration of the molecular nature of matter (a work which itself was motivated by Einstein’s analysis of the Brownian motion); or de Broglie’s assertion that matter had a wave character; or Bohr’s “construction” of a model that still went missing on two very obvious and very crucial features: stability of orbits and the nature of quantum transitions. (Come to think of it, Einstein also was the first to assert a spatially finite nature for the photon, a point on which all physicists don’t necessarily agree with Einstein, but I, anyway, do.)

So, to conclude, (i) much of Einstein’s best work wasn’t as “sexy” as E = mc^2 or  the “relativity” theory; (ii) the physics Nobel committee showed enormously good judgment in picking up the photoelectric effect and leaving out relativity theory.

Just the way relativity didn’t deserve a Nobel then, similarly, nothing related to quantum entanglement deserves it now.

It doesn’t mean that Bell wasn’t a genius. It doesn’t mean that the experimental work that Clauser, Aspect, Zeilinger, or others have done wasn’t ingenious or challenging.

What it means is simply this: they have been either (very good/brilliant) engineers or mathematicians, but they have not been discoverers of new physics. Whenever they have been physicists, their work has happened to have remained within the limits of testing a known theory, and finding it to be valid (within the experimental error), again and again. And again. But, somehow, they have not been discoverers of new physics. That’s the bottom line!


To conclude this post, think of the “photogenic” apparatus that helped nail down the issue of the neutrino oscillation (e.g. see here [^]). Then, go back to the point I have made concerning accurately measuring the transient dynamics of QM phenomena (whether involving photons or electrons). Then, think a bit about how relatively modest apparatus could still easily settle that issue. And, how it happens to be a very foundational issue, an issue that takes the decades of mystification of QM head-on.

If someone told you that all local theories of QM are BS, or that all theories of QM lead to the same quantitative predictions, he was wrong, basically wrong. The choice isn’t limited to confirmation of the mainstream QM in experiments on the one hand, and creative affirmations or denials of QM via arm-chair philosophic interpretations (such as MWI) on the other hand. There is a third choice: Verification of quantitative predictions that are different (even if only by a very tiny bit) from those of the mainstream QM. The wrong guy should have told you the right thing. Too bad he didn’t—bad for you, that is.


A Song I Like:
(Marathi) “saavaLe sundara, roopa manohara”
Lyrics: Sant Tukaram
Singer: Pt. Bhimsen Joshi
Music: Shrinivas Khale

[May be one (more) editing pass is due for this post (and also the last post). Done with editing of this post. Will let the last post remain as it is; have to move on. ]

[E&OE]