Where are those other equations?

Multiple header images, and the problem with them:

As noted in my last post, I have made quite a few changes to the layout of this blog, including adding a “Less transient” page [^].

Another important change was that now, there were header images too, at the top.

Actually, initially, there was only one image. For the record, it was this: [^] However, there weren’t enough equations in it. So, I made another image. It was this [^]. But as I had already noted in the last post, this image was already crowded, and even then, it left out some other equations that I wanted to include.

Then, knowing that WordPress allows multiple images that can be shown at random, I created three images, and uploaded them. These are what is being displayed currently.

However, randomizing means that even after re-loading a page a couple of times, there still is a good chance that you will miss some or the other image, out of those three.

Ummm… OK.

A quick question:

Here is the problem statement:

There are three different header images for this blog. The server shows you only one of them during a single visit. Refreshing the page in the browser also counts as a separate visit. In each visit, the server will once again select an image completely at random.

Assume also that the PDF for the random sequence is uniform. That is to say, there is no greater probability for any of the three images during any visit. Cookies, e.g., play no role.

Now, suppose you make only three visits to this blog. For instance, suppose you visit some page on this blog, and then refresh the same page twice in the browser. The problem is to estimate the chances that you will get to see:

  • all of the three different images, but in only three visits
  • one and the same image, each time, during exactly three visits
  • exactly two different images, during exactly three visits

Don’t read further until you solve this problem, right now: right on-the-fly and right in your head (i.e. without using paper and pencil).

(Hint [LOL!]: There are three balls of different colors (say Red, Green, and Blue) in a box, and \dots.)


…No, really!


Ummm… Still with me?

OK. That tells me that you are now qualified to read further.

Just in case you were wondering what was there in the “other” header images, here is a little document I am uploading for you. Go, see it (.PDF [^]), but also note the caveat below.

Caveats: It is a work in progress. If you spot a mistake or even just a typo, then please do let me know. Also, don’t rely on this work.

For example, the definition of stress given in the document is what I have not so far read in any book. So, take it with a pinch of the salt—even if I feel confident that it is correct. Similarly, there might be some other changes, especially those related to the definition of the flux and its usage in the generic equation. Also, I am not sure if the product ansatz for the separation of variables technique began with d’Alembert or not. I vaguely remember its invention being attributed to him, but it was a long time ago, and I am no longer sure. May be it was before him. May be it was much later, at the hands of Fourier, or, even still later, by Lame. … Anyway let it be…

…BTW, the equations in the images currently being shown are slightly different—the PDF document is the latest thing there is.

Also, let me have your suggestions for any further inclusions, too, if any. (As to me: Yes, I would like to add a bit on the finite volume method, too.)

As usual, I may change the PDF document at any time in future. However, the document will always carry the date of compilation as the “version number”.

General update:

These days, I am also busy converting my already posted CFD snippets [^] into an FVM-based code.

The earlier posted code was done using FDM, not FVM, but it was not my choice—SPPU (Pune University) had thrust it upon me.

Writing an illustrative code for teaching purposes is fairly simple and straight-forward, esp. in Python—and especially if you treat the numpy arrays exactly as if they were Python arrays!! (That is, very inefficiently.) But I also thought of writing some notes on at least some initial parts of FVM (in a PDF document) to go with the code. That’s why, it is going to take a bit of time.

Once all this work is over, I will also try to model the Schrodinger equation using FVM. … Let’s see how it all goes…

…Alright, time to sign off, already! So, OK, take care and bye for now. …


A Song I Like:
(Hindi) “baharon, mera jeevan bhee savaron…”
Music: Khayyam
Singer: Lata Mangeshkar
Lyrics: Kaifi Aazmi

[The obligatory PS: In all probability, I won’t make any changes to the text of this post. However, the linked PDF document is bound to undergo changes, including addition of new material, reorganization, etc. When I do revise that document, I will note the updates in the post, too.]



Changes at this blog…

The changes at this blog:

In case you haven’t noticed it already, notice [what else?] that the layout of this blog has undergone a change. Hopefully for the better!

In particular, I’ve made the following changes:

  1. This blog is now concerned not only with the more transient writings of mine, but also with the less transient ones! … Accordingly, I have made a new page which holds links to my less transient writings, too, whether the write-ups were published here or elsewhere. See that page here [^].
  2. The tagline too now reflects the change in the purpose of this blog.
  3. I have added a header image, too. As of now, it holds some of the equations that have come to grab my attention for a long while. This may change in future. (See the separate section below.)
  4. A more minor change is the one made to the font.

A note for reading on the mobile:

In case you read this blog on a mobile phone, then to see the “less transient” page, you will have to press the menu button appearing at the top to get to the new page. On a desktop, however, the menu is by default seen as expanded.

The image at the top:

Just for the record, the equations in the top image, as of today (13 August 2018, 11:31 hrs), are the following:

  • The inner product and the outer product of two vectors, expressed using the more familiar notation of matrices.
  • Definitions of the grad of scalars and vectors, and the div of vectors and tensors.
  • The Taylor series expansion
  • The Fourier series expansion
  • The generic conservation equation for a scalar quantity, in the Eulerian form
  • The conservation equation for momentum, in the Eulerian form. (NB: The source term is in terms of \Phi i.e. the conserved quantity itself, whereas the rest of the terms have the mass-specific term \phi in them. This is correct.)
  • Definition of stress. (See the note for this equation below.)
  • Definitions of the displacement gradient tensor, the strain tensor, and the rotation tensor.
  • Cauchy’s formula (the relation between stress and the net force)
  • The Planck-Einstein relations
  • The most general form of the Schrodinger equation
  • The time-dependent Schrodinger equation in 1D
  • The inner product defined over a Hilbert space, and expansion of a function in terms of its basis set defined in a Hilbert space

An important note on the definition of stress as given in the header image:

I haven’t yet seen this definition in any solid/fluid/continuum mechanics text. So, please treat it with caution.

Also, please do drop me a line if you find it erroneous, problematic, or simply not general enough.

On the other hand, if you run into this definition anywhere, then please do bring the reference to my attention; thanks in advance. [This definition is a part of my planned paper on stress and strain.]

Some of the equations that got left out:

The equations which I would have liked to have in the header, but which got left out for a lack of space, are the following (in no particular order):

  • Newton’s second law defining force
  • Definitions of action (as momentum-dot-displacement and energy-times-time); action as an integral; action as a functional
  • The general equation for the methods of the weighted residuals, and the particular equations for the commonly used test functions (i.e., the Galerkin, the pseudospectral, the least-squares, the method of moments, and the collocation)
  • The Euler identity

Perhaps also, things like:

  • The wavefunction normalization principle, and the Born equation for finding probabilities
  • Structure of probability: simultaneous vs. subsequent events
  • The wave, diffusion and potential equations (juxtaposed with the Schrodinger equation)

On the other hand, some of the equations that are generally of great importance, but which have not come to preoccupy me a lot, are the following:

  • The Euler-Lagrange equations for classical mechanics
  • The Maxwell equations of electrodynamics, supplemented with the “fifth” (i.e. the Lorentz) force equation
  • Boltzmann’s equation, and other equations from statistical mechanics

I must have left out quite a few more in both the lists.

However, I am sure that the three laws of thermodynamics probably would not make it to the header image, despite all their grandeur, their all-encompassing scope.

The reason is this: a computational modeler like me seldom works in a very direct manner with the laws of thermodynamics themselves. These laws do inform his theory; the derivation of the equations he uses indeed are based on them, even if only indirectly. However, the equations he works with happen to be much more detailed (and of far more delimited scope). For instance: the Navier-Stokes system (CFD)—an expression of the first law; the stress-strain fields (FEM)—which makes for merely a part of the internal energy; or the Maxwell system (FDTD)—ditto. Etc.

Further change may be coming:

All in all, I am not quite happy with the top image as it exists right now. … It is too crowded, and speaking from a visual aesthetics point of view, its layout is not well-balanced.

So, on both these counts (too much crowding already, and too many good equations being left out), I am thinking of a further idea: may be I should create a sequence of images, each containing only a few equations, and let the server show you one of them at random. Whaddaya think?

Do check out the “less transient” page:

But yes, if you are interested, check out the “less transient” page too, and let me know if something I wrote in the past should be there or not.

So… does that mean that I’ve gone “mathy”?

Though I exclusively include only equations in the header image—no pictures or visualizations at all, no code, and not much text either—it doesn’t mean that I have gone “mathy”. … Hell, no! Not at all! … Just check out my less transient page [^].

A song I like:

(Hindi) “aankhon aankhon mein hum tum, ho gaye…”
Music: Kalyanji-Anandji
Singers: Kishore Kumar, Asha Bhosale
Lyrics: Anand Bakshi


Absolutely Random Notings on QM—Part 3: Links to some (really) interesting material, with my comments

Links, and my comments:

The “pride of place” for this post goes to a link to this book:

Norsen, Travis (2017) “Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory,” Springer

This book is (i) the best supplementary book for a self-study of QM, and simultaneously, also (ii) the best text-book on a supplementary course on QM, both at the better-prepared UG / beginning PG level.

A bit expensive though, but extensive preview is available on Google books, here [^]. (I plan to buy it once I land a job.)

I was interested in the material from the first three chapters only, more or less. It was a delight even just browsing through these chapters. I intend to read it more carefully soon enough. But even on the first, rapid browsing, I noticed that several pieces of understanding that I had so painstakingly come to develop (over a period of years) are given quite straight-forwardly here, as if they were a matter of well known facts—even if other QM text-books only cursorily mention them, if at all.

For instance, see the explanation of entanglement here. Norsen begins by identifying that there is a single wavefunction, always—even for a multi-particle system. Then after some explanation, he states: “But, as usual in quantum mechanics, these states do not exhaust the possibilities—instead, they merely form a basis for the space of all possible wave functions. …”… Note the emphasis on the word “basis” which Norsen helpfully puts.

Putting this point (which Norsen discusses with a concrete example), but in my words: There is always a single wavefunction, and for a multi-particle system, its basis is bigger; it consists of the components of the tensor product (formed from the components of the basis of the constituent systems). Sometimes, the single wavefunction for the multi-particle system can be expressed as a result of a single tensor-product (in which case it’s a separable state), and at all other times, only as an algebraic sum of the results of many such tensor-products (in which case they all are entangled states).

Notice how there is no false start of going from two separate systems, and then attempting to forge a single system out of them. Notice how, therefore, there is no hand-waving at one electron being in one galaxy, and another electron in another galaxy, and so on, as if to apologize for the very idea of the separable states. Norsen achieves the correct effect by beginning on the right note: the emphasis on the single wavefunction for the system as a whole to begin with, and then clarifying, at the right place, that what the tensor product gives you is only the basis set for the composite wavefunction.

There are many neat passages like this in the text.

I was about to say that Norsen’s book is the Resnick and Halliday of QM, but then came to hesitate saying so, because I noticed something odd even if my browsing of the book was rapid and brief.

Then I ran into

Ian Durham’s review of Norsen’s book, at the FQXi blog,

which is our link # 2 for this post [^].

Durham helpfully brings out the following two points (which I then verified during a second visit to Norsen’s book): (i) Norsen’s book is not exactly at the UG level, and (ii) the book is a bit partial to Bell’s characterization of the quantum riddles as well as to the Bohmian approach for their resolution.

The second point—viz., Norsen’s fascination for / inclination towards Bell and Bohm (B&B for short)—becomes important only because the book is, otherwise, so good: it carries so many points that are not even passingly mentioned in other QM books, is well written (in a conversational style, as if a speech-to-text translator were skillfully employed), easy to understand, thorough, and overall (though I haven’t read even 25% of it, from whatever I have browsed), it otherwise seems fairly well balanced.

It is precisely because of these virtues that you might come out giving more weightage to the B&B company than is actually due to them.

Keep that warning somewhere at the back of your mind, but do go through the book anyway. It’s excellent.

At Amazon, it has got 5 reader reviews, all with 5 stars. If I were to bother doing a review there, I too perhaps would give it 5 stars—despite its shortcomings/weaknesses. OK. At least 4 stars. But mostly 5 though. … I am in an indeterminate state of their superposition.

… But mark my words. This book will have come to shape (or at least to influence) every good exposition of (i.e. introduction to) the area of the Foundations of QM, in the years to come. [I say that, because I honestly don’t expect a better book on this topic to arrive on the scene all that soon.]

Which brings us to someone who wouldn’t assign the |4\rangle + |5\rangle stars to this book. Namely, Lubos Motl.

If Norsen has moved in the Objectivist circles, and is partial to the B&B company, Motl has worked in the string theory, and is not just partial to it but even today defends it very vigorously—and oddly enough, also looks at that “supersymmetric world from a conservative viewpoint.” More relevant to us: Motl is not partial to the Copenhagen interpretation; he is all the way into it. … Anyway, being merely partial is something you wouldn’t expect from Motl, would you?

But, of course, Motl also has a very strong grasp of QM, and he displays it well (even powerfully) when he writes a post of the title:

“Postulates of quantum mechanics almost directly follow from experiments.” [^]

Err… Why “almost,” Lubos? 🙂

… Anyway, go through Motl’s post, even if you don’t like the author’s style or some of his expressions. It has a lot of educational material packed in it. Chances are, going through Motl’s posts (like the present one) will come to improve your understanding—even if you don’t share his position.

As to me: No, speaking from the new understanding which I have come to develop regarding the foundations of QM [^] and [^], I don’t think that all of Motl’s objections would carry. Even then, just for the sake of witnessing the tight weaving-in of the arguments, do go through Motl’s post.

Finally, a post at the SciAm blog:

“Coming to grips with the implications of quantum mechanics,” by Bernardo Kastrup, Henry P. Stapp, and Menas C. Kafatos, [^].

The authors say:

“… Taken together, these experiments [which validate the maths of QM] indicate that the everyday world we perceive does not exist until observed, which in turn suggests—as we shall argue in this essay—a primary role for mind in nature.”

No, it didn’t give me shivers or something. Hey, this is QM and its foundations, right? I am quite used to reading such declarations.

Except that, as I noted a few years ago on Scott Aaronson’s blog [I need to dig up and insert the link here], and then, recently, also at

Roger Schlafly’s blog [^],

you don’t need QM in order to commit the error of inserting consciousness into a physical theory. You can accomplish exactly the same thing also by using just the Newtonian particle mechanics in your philosophical arguments. Really.

Yes, I need to take that reply (at Schlafly’s blog), edit it a bit and post it as a separate entry at this blog. … Some other time.

For now, I have to run. I have to continue working on my approach so that I am able to answer the questions raised and discussed by people such as those mentioned in the links. But before that, let me jot down a general update.

A general update:

Oh, BTW, I have taken my previous QM-related post off the top spot.

That doesn’t mean anything. In particular, it doesn’t mean that after reading into materials such as that mentioned here, I have found some error in my approach or something like that. No. Not at all.

All it means is that I made it once again an ordinary post, not a sticky post. I am thinking of altering the layout of this blog, by creating a page that highlights that post, as well as some other posts.

But coming back to my approach: As a matter of fact, I have also written emails to a couple of physicists, one from IIT Bombay, and another from IISER Pune. However, things have not worked out yet—things like arranging for an informal seminar to be delivered by me to their students, or collaborating on some QM-related simulations together. (I could do the simulations on my own, but for the seminar, I would need an audience! One of them did reply, but we still have to shake our hands in the second round.)

In the meanwhile, I go jobless, but I keep myself busy. I am preparing a shortish set of write-ups / notes which could be used as a background material when (at some vague time in future) I go and talk to some students, say at IIT Bombay/IISER Pune. It won’t be comprehensive. It will be a little more than just a white-paper, but you couldn’t possibly call it even just the preliminary notes for my new approach. Such preliminary notes would come out only after I deliver a seminar or two, to physics professors + students.

At the time of delivering my proposed seminar, links like those I have given above, esp. Travis Norsen’s book, also should prove a lot useful.

But no, I haven’t seen something like my approach being covered anywhere, so far, not even Norsen’s book. There was a vague mention of just a preliminary part of it somewhere on Roger Schlafly’s blog several years ago, only once or so, but I can definitely say that I had already had grasped even that point on my own before Schlafly’s post came. And, as far as I know, Schlafly hasn’t come to pursue that thread at all, any time later…

But speaking overall, at least as of today, I think I am the only one who has pursued this (my) line of thought to the extent I have [^].

So, there. Bye for now.

I Song I Like:
(Hindi) “suno gajar kya gaaye…”
Singer: Geeta Dutt
Music: S. D. Burman
Lyrics: Sahir Ludhianvi
[There are two Geeta’s here, and both are very fascinating: Geeta Dutt in the audio, and Geeta Bali in the video. Go watch it; even the video is recommended.]

As usual, some editing after even posting, would be inevitable.

Some updates made and some streamlining done on 30 July 2018, 09:10 hrs IST.



Here are a few interesting links I browsed recently, listed in no particular order:

“Mathematicians Tame Turbulence in Flattened Fluids” [^].

The operative word here, of course, is: “flattened.” But even then, it’s an interesting read. Another thing: though the essay is pop-sci, the author gives the Navier-Stokes equations, complete with fairly OK explanatory remarks about each term in the equation.

(But I don’t understand why every pop-sci write-up gives the NS equations only in the Lagrangian form, never Eulerian.)

“A Twisted Path to Equation-Free Prediction” [^]. …

“Empirical dynamic modeling.” Hmmm….

“Machine Learning’s `Amazing’ Ability to Predict Chaos” [^].

Click-bait: They use data science ideas to predict chaos!

8 Lyapunov times is impressive. But ignore the other, usual kind of hype: “…the computer tunes its own formulas in response to data until the formulas replicate the system’s dynamics. ” [italics added.]

“Your Simple (Yes, Simple) Guide to Quantum Entanglement” [^].

Click-bait: “Entanglement is often regarded as a uniquely quantum-mechanical phenomenon, but it is not. In fact, it is enlightening, though somewhat unconventional, to consider a simple non-quantum (or “classical”) version of entanglement first. This enables us to pry the subtlety of entanglement itself apart from the general oddity of quantum theory.”

Don’t dismiss the description in the essay as being too simplistic; the author is Frank Wilczek.

“A theoretical physics FAQ” [^].

Click-bait: Check your answers with those given by an expert! … Do spend some time here…

Tensor product versus Cartesian product.

If you are engineer and if you get interested in quantum entanglement, beware of the easily confusing terms: The tensor product and the Cartesian product.

The tensor product, you might think, is like the Cartesian product. But it is not. See mathematicians’ explanations. Essentially, the basis sets (and the operations) are different. [^] [^].

But what the mathematicians don’t do is to take some simple but non-trivial examples, and actually work everything out in detail. Instead, they just jump from this definition to that definition. For example, see: “How to conquer tensorphobia” [^] and “Tensorphobia and the outer product”[^]. Read any of these last two articles. Any one is sufficient to give you tensorphobia even if you never had it!

You will never run into a mathematician who explains the difference between the two concepts by first directly giving you a vague feel: by directly giving you a good worked out example in the context of finite sets (including enumeration of all the set elements) that illustrates the key difference, i.e. the addition vs. the multiplication of the unit vectors (aka members of basis sets).

A third-class epistemology when it comes to explaining, mathematicians typically have.

A Song I Like:

(Marathi) “he gard niLe megha…”
Singers: Shailendra Singh, Anuradha Paudwal
Music: Rushiraj
Lyrics: Muralidhar Gode

[As usual, a little streamlining may occur later on.]