Micro-level water-resources engineering—2

As mentioned in my last blog post, I have been browsing material on the title subject.

In this post, let me note down a few informative links that I have (only) browsed (but not completely read through) thus far. I will come back to my own notes and observations (based on them) in the subsequent posts. BTW, I intend to keep this post as a catch-all thing: whenever I find a new interesting link, I will come back and note it here, without separately mentioning update dates and all. (I think I will also consider converting this post into a separate page of this blog or my personal Web site.)

* * * * *   * * * * *   * * * * *
Portals:

India Water Portal [^] (Web sites like these are, IMO, better than novels in English 🙂 )
Rainwater Harvesting [^]

Government and Public Sector Portals/Sites:

IMD: [^]

IITM: [^]

Central Groundwater Board:  [^]. This is a big site/portal. So, let me note down the links to some specifically relevant parts of it:  Downloads [^], Watershed [^], Aquifer Systems of India (and a few states) [^], Groundwater Yearbooks [^], Groundwater Scenario in India [^].

The World Bank funded projects in India, phase I and II: [^][^]

Books, Academics, and Professional Organizations:

A popularization kind of a book on Rajasthan’s water culture: [^]. Incidentally, it is through this book that I came to place Rajendra Singh’s work in a better context. The last time I had wondered why Singh didn’t go 400 km West. This book clarified the matter to me.

US Dept of Agriculture Report: Technical Guide to Managing Ground Water Resources [(.PDF) ^]

Groundwater Manual [^]

A book at the US GS site: [^]

A research group at CTARA, IIT Bombay: [^]. Reports and Course Materials at [^],  [^],  and [^]

A research group at IISc Bangalore: [^]. An example of a project they are carrying out: [^]

A private research cum consulting group from Pune (with many academic projects conducted with the Geology Dept. of S. P. University of Pune, too): [^]

CP Kumar’s links on hydrology [^] and on hydrology resources [^]. He works at the National Institute of Hydrology: [^]. There is a learning package for hydrology for the beginners, too: [^]

Indian Association of Hydrologists [^]

Software:

Hydrology Software:

Lists of software maintained at the USGS site, in general [^], and for groundwater in particular [^].

A proprietory software developed for use by the government agencies in India [^]:

Open-source GIS software:

Wiki list [^].

The following two seem to be more general purpose and/or leading; they also are multi-platform: QGIS (I think IIT Bombay people use it) [^], and GRASS [^].

An open-source GIS software on Windows (.NET) platform: [^]. US EPA uses it: [^]. I installed and tried it, but the documentation seems to be lagging behind the software.

ParFlow: [^]

List at the GIS Lounge: [^]

Rainfall and Its Measurement:

Annual rainfall animation [^]. Check out the animated GIF [^]. A surprise: check out the low rainfall area which the animation shows for the Konkan region. That is because while creating the animation, they coarse-grained the data. There are unexpectedly low-rainfall region even in Konkan, but these are rather isolated. Once again highlights the importance of the local data. But, it’s entertaining anyway.

Another royal entertainment (reduce your computer’s volume before hitting the link): [^]. Then, to see the actual action, hit the “Play the whole sequence” button. (This is one of the rare times that you would wish you had an Intel 386.)

Just in case you want to keep a record of the rainfall in your area, in India, we follow these specs  [(.PDF) ^].

In case you didn’t know, 1 mm of rainfall at a point means “A 0.001 m3, or 1 litre of water to each square metre of the field” [^]. … 1 cm of rainfall is ten times that number.

Exercise:

On the Internet, look up the area of a state, district, taluka, or city; look up its average annual rainfall; then find the total quantity of water (in litres) it receives via rainfall in a typical year.

Then, also do searches and find out data about its total water demand. Also, find out its current water availability, and the short-fall in the supply.

Trivia:

The average annual rainfall for India is about 70 cm in monsoon alone, and about 110 cm for the entire year (including the non-monsoon rains, snow-fall, etc.) (Source: [^]. Also see: [^]).

Floods and droughts still visit India every year.

The average annual rainfall in Jaisalmer is just 16.4 cm (less than one-fifth of that at Delhi), and all of it is received over only 10 days. (Yes, statistically speaking, as many as 355 days in a year go completely dry there.) The water-table depth there is really bad; it ranges between about 40 to 80 m (i.e., about 125 to 250 feet) [^].

Jaisalmer nevertheless has a huge lake that would supply water to the city [^] all through the year—the lake would not go dry even in summer! This lake: Image [^], video [^].

No, that lake doesn’t get its water supply from a river or groundwater sources; there is in fact no mountainous or hilly region around it. The only source of water for this lake is: an ingenious scheme for rainwater harvesting. A scheme that is almost 7 centuries old.

Now, go, figure how wasteful—and flood-hit—and water-scarce—the rest of us manage to remain even today.

* * * * *   * * * * *   * * * * *

A Song I Like:
(Marathi) “ye re ghanaa ye re ghanaa…”
Music: Hridaynath Mangeshkar
Lyrics: Aarati Prabhu
Singer: Asha Bhosale

 

[E&OE]

Advertisements