A few remarks on the Eco-Cooler

While generally browsing ISHRAE[^]’s Web site after a long while today, I ran into this coverage of the so-called Eco-Cooler [^] in their News Section.

… My earlier coverage of another creative usage of the used plastic bottles was here: [^] (see the “farm ponds” section in that post).

Anyway, coming back to the Eco-Cooler, a simple Google search on the inventor’s name (“Ashis Paul”) will give you quite a few links, e.g. here [^] and here [^]. A sketchy story as to how Paul ended up inventing the cooler is mentioned here [^].

The idea is so simple that you just have to wonder why no one else thought of it before!

Apart from the cultural reasons (people in this part of the world arguably don’t always try to tackle their life’s problems creatively; they arguably just sit idle and whine and complain) the other reason, I think, is that to a learned engineer (and I will call myself that), it would be difficult to think that the cooling effect obtained this way could be significant—the claim is a drop of up to 5 degrees Celcius (i.e. 9 degrees Fahrenheit) in the room temperature!

… I don’t know why, but somehow, at least on the face of it, a claim of this big a temperature drop does seem unbelievable, at least initially.

Anyway, here are a few things you could pursue, especially if you are a student of mechanical engineering:

  • First, name (or hit your text books and find out) the principle that explains the cooling effect.
  • Then, assume suitable values for the air flow, and using the appropriate thermodynamic/psychrometric charts and property tables, determine whether the inventor’s claim is acceptable. (I have not done this cross-check myself before writing this post; I just assumed that someone at ISHRAE must have done it!)
  • Now check out the DIY YouTube videos on this invention. If interested, think of building an Eco-Cooler and measuring its performance yourself. (And if you do that, and if you are from Pune or a nearby place, then do drop me a line. I would love to come over and check it out myself.) Alternatively, think of doing a “simple” CFD analysis and compute the estimated temperature drop. [… And to think how people keep asking me where I get all my student-project ideas from!]

Next are a few notings (assuming that the cooling effect is indeed big enough) to help you put it all in the right context, and then also some pointers as to how you could try and modify (and even optimize) the existing design.

  • Bamboo Curtains: First, try to put it in some context: People in India often use bamboo “chaTai”s or mats [^] as window covers/curtains. (Also the khus curtains.) Some of these “chaTai”s do carry regularly spaced holes. Do such mats (or even Venetian blinds) give rise to any cooling effect? Can they? Why or why not?
  • Flow Pattern: Using ink blobs or other tracers in a flow of water, visualize the geometry of the flow going into a hole, and ask yourself: Is a bottle surface at all necessary? Why? When?
  • Shape and Size: Would you get a better effect if you modify the dimensions of the bottles used in the Eco-Cooler? Is the size of the water bottle optimal? How about the shape?
  • Mounting: What if you mount the bottles on the board not at the neck but at the base? Would it be more stable? Would it be more convenient because nothing goes protruding outside the room? Many questions below assume mouting on the base, such that the bottles come protruding inside the room. Let me call it the Internally Protrduding Design (IPD for short), as compared to the Externally Protruding Design (EPD, which is shown in the original photographs and videos).
  • Materials: How about changing the material? What if you use clay for the tube?
  • Evaporative Cooling: Assume IPD. Would keeping the clay tubes wet help enhance the cooling? You could keep them wet via a simple system of water from an overhead tank running over or percolating through the thickness of the clay tubes. For this purpose, arrange the base circles in a hexagonal lattice arrangement (rather than the simple square lattice they show in the original sketches and videos). In any case, compare the cooling obtained using the dry Eco-Cooler vs. that using the desert cooler. Then, compare it with the wet Eco-Cooler. To do that, first find out the natural cooling limitations of the desert cooler. (Something like this was a unit test question I had asked my ME (Heat Power) students last year.) Where would the wet Eco-Cooler be more effective—in the humid coastal areas (e.g. in Mumbai), or in the dry-and-hot areas (like in the plains or Delhi)?
  • Cooling Achieved: Estimate the size of the biggest room that may be effectively cooled using EPD. Repeat for IPD. Also find out (by CFD analysis or by experiment) the locations where the cooling would be effective enough to bring (at least a bit of) comfort to a human being.
  • Forced Circulation: What if you use forced air circulation with IPD? Would it lead to any better cooling? Don’t guess! Bring out your charts, tables and calculators once again, assume suitable values for fans, and provide a quantitative estimate. Then, also figure out if a forced air circulation could be economical enough.
  • Enhanced Natural Circulation: (Assume both designs in turn.) Think if you could possibly enhance the natural air circulation by using some simple cardboard flaps erected on the outside of the room. (Do a quick-and-simple CFD analysis if you wish.)
  • Radiation: How much of the temperature drop can be attributed to the obvious reduction in the radiative heating alone?
  • Internal Reflection: Is the total internal reflection an important factor here? Would using clay tubes (of varying cross section) reduce the glare due to total internal reflection?
  • Noise Generation: Does the arrangement emit sound (as in a patch of bamboo trees)?
  • Aesthetics: Assume IPD: Think of how the cooler design may be used creatively for aesthetic enhancements of the room interiors in a middle-class apartment or bungalow. (The cooler doesn’t have to be used only in the slums!) Could ready-made panels of standard sizes be made in clay or alternative materials (e.g. cheap ceramics) just as cost-effectively? Would painting the bottles help?
  • Reverberations: Assume IPD: Refer to technical acoustics. Can you reduce the sound reverberations if you use such shapes near walls? Could plastic bottles be at all effective in this respect? How about the clay tubes? Would the existence of the holes modify the sound-dampening effect due to the protruding tubes? Would they introduce unwanted modulations? Estimate the range of sound-frequencies (or of musical tones) that stand to get impacted (for the better or for the worse) due to the presence of the Eco-Cooler.


A Song I Like:

(Hindi) “too laalee hai savere waalee, gagan rang de tu mere man kaa…”
Music: Sapan-Jagmohan
Singers: Kishore Kumar, Asha Bhosale
Lyrics: Indivar Naqsh Lyallpuri [^]

[BTW, this song reminds me of another song which has a similar tune. (I don’t know music well enough to make out “raaga”s. In fact, I often cannot even make out tones! I can only compare the tones in a hand-waving sort of a manner, that’s all! … It’s just that sometimes I happen to notice some similarities.) See if you can guess it—the other song. I will tell you the answer in my next post.]

[I have a habit of coming back and modifying my post a bit even after publication. But guess, at least for this post, there really isn’t anything left to add or modify.  Actually, I did modify! [sigh!] I clarified the two designs and even added the names for them. I even changed the title a bit!!…  Anyway, bye for now, and take care…]


(A)theism, God, and Soul

TL;DR: The theism vs. atheism debate isn’t very important; the concept of soul is. To better understand soul, one has to turn to the issues pertaining to the divine. The divine is an adjective, not a noun; it is a modality of perception (of reality, by a soul); it is a special but natural modality that in principle is accessible to anyone. The faithful destroy the objectivity of the divine by seizing the concept and embedding it into the fold of religious mysticism; the materialists and skpetics help them in this enterprise by asserting, using another form of mysticism, that the divine does not even exist in the first place (because, to them, soul itself doesn’t).  Not all points are explicated fully, and further, the writing also is very much blogsome (more or less just on-the-fly).

Also see an important announcement at the end of this post.

This post has its origins in a comment which I tried to make at Anoop Verma’s blog, here: [^]. Since his blog accepts only comments that are smaller than 4KB, and since my writing had grown too long (almost 12 KB), I then tried sending that comment by email to him. Then, rather than putting him through the bother of splitting it up into chunks of 4KB each, I decided to run this comment at my own blog, as a post here.

After a rapid reading of Varma’s above-mentioned post [^], I was immediately filled with so many smallish seeds of thoughts, rushing in to me in such a random order, that I immediately found myself trapped in a state of an n-lemma (which word is defined as a quantitative generalization of “dilemma”). After idly nursing this n-lemma together with a cup of coffee for a while, both with a bit of fondness, I eventually found me saying to myself:

“Ah! And I don’t even know where to begin writing my comment!”.

Soon enough thereafter, I realized that the n-lemma persists precisely because I don’t know where to begin. … Begin. … Begin. … It’s Begin. … It’s the beginning! … Which realization then immediately got me recognizing that what is involved here belongs to the level of the basic of the basics—i.e., at the level of philosophic axioms.

Let me deal with the issue at that level, at the level of axiomatics, even though this way, my comment will not be as relevant to Varma’s specific post as it could possibly have been. But, yes, if I could spell out where to begin, then the entire problem would have been at least half-conquered. That’s because, this way, at least an indication of (i) the nature of the problem, and (ii) of its context, would have been given. As they say, a problem well defined is a problem half solved.

My main rhetorical point here is: It isn’t really necessary for one to try to get to know what precisely the term “god” means. By itself, it even looks like a non-issue. Mankind has wasted too much time on the issue of god. (Here, by “god,” I also include the God of Christianity, and of any other monotheistic/other religion.)

I mean to say: you could have a logically complete philosophy, and therefore could live a logically complete (i.e. “fullest” etc.) life, even if you never do come across the specific word: “god.”

(BTW, you could have completeness of life in this way only if you weren’t to carry even an iota of faith anywhere in your actual working epistemology. … Realize, faith is primarily an issue from epistemology, not metaphysics; the consequences of faith-vs-reason in morality, religion, society, organized religion, and politics are just that—only consequences.)

So, it isn’t really necessary to know what god means or therefore even to search for one—or to spend time proving its presence or absence. That’s what I think. Including “wasting” time debating about theism vs. atheism.

But it is absolutely necessary, for the aforementioned logical completeness to be had, to know what the term “soul” means—and what all it presupposes, entails, and implies.

Soul is important.

When it comes to soul, you metaphysically have one anyway, and further, theoretical questions pertaining to its existence and identity (or a research pertaining to them) logically just does not arise. The concept is a fundamental self-evident primary—i.e. a philosophic axiom. (Of course, there have been people like David Hume, but I am focusing here mainly on establishing a positive, not on polemics.)

As I said in the past [^][^], soul, to me, is an axiomatic concept.

Now, like in any other field of knowledge and endeavor, the greater the extent and refinement of your knowledge (of something), the better is your efficacy (in that regard). In other words, the better off you are.

Ditto, with regard to this concept too.

A case in point: Suppose you yourself were capable of originally and independently reaching that philosophical identification which is contained in Ayn Rand’s axiom “existence exists,” and suppose that you held it in a truly in-depth manner, i.e. qua axiom. Just assume that. Just assume, for the sake of argument, that you were the one who reached that universal truth which is encapsulated by this axiom, for the first time in the world! But an axiom by itself is nothing if it isn’t tied-in non-contradictorily with all its prior cognitive preparation and logical implications. Suppose that you did that too—to match whatever extent of knowledge you did have. Now consider the extent and richness of the (philosophic) knowledge which you would have thus reached, and compare it to that which Ayn Rand did. (For instance, see Dr. Harry Binswanger’s latest post here [^] with a PDF of his 1982 writings here [^], which is a sort of like an obit-piece devoted to Ayn Rand.) … What do you get as a result of that comparison?

“What’s the point,” you ask?

The point is this: The better the integrations, the better the knowledge. The non-contradictorily woven-in relations, explanations, implications, qualifications, applications, etc. is what truly makes an axiom “move” a body of knowledge—or a man. And on this count, you would find Rand beating you by “miles and miles”—or at least I presume Varma would agree to that.

Realize, by the grace of the nature of man (including the nature of knowledge), something similar holds also for the concept of soul.

And here, in enriching the meaning, applications, etc. of this concept, you would find that most (or all) of the best material available to you has come to you from houses of spirituality, or for that matter, even of religion (by which, I emphatically mean, first and foremost (though not exclusively), the Indian religions)—not from Ayn Rand.

The extant materials pertaining to soul come from houses of spirituality and religion (or rarely, e.g. in the Upanishads, of ancient Indian philosophy). Given the nature of their sources—ancient, scattered, disparate, often mere notings without context, and most importantly, only in the religious or mystical context—it is very easy to see that they must have been written via an exercise of faith. This is an act of faith on the writer’s part—and sometimes, he has been nothing more than a mere scribe to what appears to be some inestimably better Guru, who probably wouldn’t have himself espoused faith or mysticism. But, yes, the extant materials on the philosophy of mind are like that. (Make sure to distinguish between epistemology and philosophy of mind. Ayn Rand had the former, but virtually nothing on the latter.) Further, the live sources about this topic also most often do involve encouragement to faith on the listener’s/reader’s part. They often are very great practitioners but absolutely third-class intellectualizers. Given such a preponderance of faith surrounding these matters, there easily arises a tendency to (wrongly) label the good with the poison that is faith—and as the seemingly “logical” next step, to dismiss the whole thing as a poison.

Which is an error. An error that occurs at a deep philosophic level—and if you ask me, at the axiomatic level.

In other words, there exists a “maayaa” (or a veil) of faith, which you have to penetrate before you can get to the rich, very rich, insights on the phenomenon of soul, on the philosophy of the mind.

Of those who declare themselves to be religious or faithful, some are better than others; they sometimes (implicitly) grasp the good part concerning the nature of the issue, at least partly. Some of these people therefore can be found even trying to defend religion and its notions—such as faith—via a mostly misguided exercise of reason! (If you want to meet some of them: People like Varma, being in India, would be fortunate in this regard. Just spend a week-end in a “waari,” or in an “aashram” in the Himalya, or at a random “ghaaTa” on a random river, or in a random smallish assembly under some random banyan or peepul tree…. You get the idea.)

Thus to make out (i.e. distinguish) the better ones from the rotten ones (i.e. the actually faithful among those who declare themselves to believe in faith), you yourself have to know (or at least continue keeping an unwavering focus on) the idea of  the“soul” (not to mention rational philosophic ideas such as reason). You have to keep your focus not on organized religion primarily, not even on religion … and not even, for that matter, even on spirituality. Your underlying and unwavering focus has to be on the idea of “soul,” and the phenomena pertaining to it.

You do that, and you soon enough find that issues such as atheism vs. theism more or less evaporate away. At least, they no longer remain all that interesting. At least, not as interesting as they used to be when you were a school-boy or a teenager.

The word “atheism” is derived from the word “theism,” via a negation (or at least logical complimentation) thereof. “Atheism” is not a word that can exist independently of “theism.”

Etymologically, “theism” is a corrupt form (both in spelling and meaning) of the original (historical) Western term “dei-ism,” which came from something like “dieu”, which came from a certain ancient Sanskrit root involving “d”.  The Sanskrit root “d” is involved in the stems that mean: to give, and by implication and in appropriate context, also to receive. It is a root involved in a range of words: (i) “daan,” meaning giving; (ii) “datta,” meaning, the directly presented (in the perceptual field)—also the given—and then, also the giver (man), in particular, the (bliss)-giving son of the sage “atri” and his wife “anasuya” (an_ + a + su + y + aa, i.e., one without ill-will (or jealousy or envy)), and (iii) “divya”, meaning, divine (the same “div” root!).

The absence in the Western etymologies of the derivation of the English word “divine” from the ancient “d,” “diue,” “div-,” etc. is not only interesting psychologically but also amply illuminating morally.

The oft-quoted meaning of “divya” as “shining, or glimmering” appears to be secondary; it seems to be rather by association. The primary meaning is: the directly given in the perception—but here the perception is to be taken to be of a very special kind. The reason why “shimmering” gets associated with the word is because of the very nature of the “divya-druShTi” (divine vision). Gleening from the sources, divine vision (i) seems to be so aetherial and evanescent, flickering in the way it appears and disappears, and (ii) seems to include the perceived objects as if they were superimposed on the ordinary perceptual field of the usual material objects “out there,” say in a semi-transparent sort of a manner, and only for a fleeting moment or two. The “shimmering” involved, it would seem, is analogous to the mirage in the desert, i.e. the “mrigajaLa” illusion. Since a similar phenomenon also occurs due to patterns of cold-and-dense and hot-and-rarefied air near and above an oil lamp, and since the lamp is bright, the “di”-whatever root also gets associated with “shining.” However, this meaning is rather by association; it’s a secondary meaning. The primary meaning of “divya” is as in the “specially perceived,” with the emphasis being on specially, and with the meaning of course referring to the process of perception, not to this perceived object vs. that.

Thus, “divya” is an adjective, not a noun; it applies to a quality of a perception, not to that which has thus been perceived. It refers to a form or modality of perception (of (some definite aspect of) reality). This adjective completely modifies whatever that comes after it. For instance, what is perceptible to a “divya”-“druShTi” (divine vision) cannot be captured on camera—the camera has no soul. The object which is perceived by the ordinary faculty of vision can be captured on camera, but not the object which is perceptible via “divya-druShTi.” The camera would register merely the background field, not the content of the divine vision.

(Since all mental phenomena and events have bio-electro-chemo-etc-physical correlates, it is conceivable that advancement in science could possibly be able to capture the content of the “divya-druShTi” on a material medium. Realize that its primary referent still would belong to the mental referents. A soul-less apparatus such as a camera would still not be able to capture it in the absence of a soul experiencing it.)

Notice how the adjective ”divya”, once applied to “druShTi”, completely changs the referent from a perception of something which is directly given to the ordinary vision in the inanimate material reality (or the inanimate material aspects of a living being), to the content of consciousness of an animate, soulful, human being.

This does not mean that this content does not refer to reality. If the “divya-druShTi” is without illusions or delusions, what is perceived in this modality of perception necessarily refers to reality. Illusions and delusions are possible with the ordinary perception too. It is a fallacy to brand all occurrences of “divya-druShTi” as just “voices” and “hallucinations/delusions/illusions” just because: (i) that mode of perception too is fallible, and (ii) you don’t have it anyway. (Here, the “it” needs some elaboration. What you don’t have (or haven’t yet had) is: a well-isolated instance of a “divya” perception, as a part of your past experience. That doesn’t mean that other people don’t or cannot have it. Remember, the only direct awareness you (a soul) have is of your own consciousness—not someone else’s.)

“deva” or “god” (with a small `g’) is that which becomes accessible (i.e. perceivable) to you when your perception has (temporarily) acquired the quality of the “divya.”

Contrary to a very widespread popular misconception, the word “divya” does not come from a more primary“dev”; it does not mean that which is given by “dev” (i.e. a god). In other words, in principle, you are not at the mercy of a god to attain the “divya” modality.

The primacy, if there is any at all, is the other way around: the idea of “dev” basically arises with that kind of a spiritual (i.e. soul-related) phenomenon which can be grasped in your direct perception when the modality of that direct perception carries the quality of the “divya.” (The “d” is the primary root, and as far as my guess-work goes, a likely possibility is that both the “di” (from which comes“divya”) and the “de” (from which comes the“dev”) are off-shoots.) T

This special modality of perception is apparently not at all constant in time—not to most people who begin to have it anyway. It comes and goes. People usually don’t seem to be reaching a level of mastery of this modality to the extent that they can bring it completely under their control. That is what you can glean from the extant materials as well as from (the better ones among) the living people who claim such abilities.

Yet, in any case, you don’t have to have any notion of god, not even thereby just meaning “dev,” in order to reach the “divya.” That is my basic point.

Of course, I realize that those whose actual working epistemology is faith and mysticism, have long, long ago seized the idea of “dev” (i.e. god), and endowed it with all sorts of mystical and irrational attributes. One consequence of such a mystification is the idea that the “divya” is not in the metaphysical nature of man but a mystical gift from god(s). … An erroneous idea, that one is.

A “divya” mode of perception is accessible to anyone, but only after developing it with proper discipline and practice. Not only that, it can also be taught and learnt, though, gleening from literature, it would be something like a life-time of a dedication to only that one pursuit. (In other words, forget computational modeling, engineering, quantum physics, blogging… why, even maths and biology!)

In the ancient Indian wisdom, the “divya,” “dev,” and the related matters also involve a code of morality pertaining to how this art (i.e. skill) is to be isolated and grasped, learnt, mastered, used, and taught.

Misuse is possible, and ultimately, is perilous to the abuser’s own soul—that’s what the ancient Indian wisdom explicitly teaches, time and again. That is a very, very important lesson which is lost on the psychic attackers. … BTW, “veda”s mention also of this form of evil. (Take a moment to realize how it can only be irrationality—mysticism and faith in particular—which would allow the wrongful practitioner to attempt to get away with it—the evil.)

The “divya” mode is complementary to the conceptual mode of perception. (Here, I use the term “perception” in the broadest possible sense, as meaning an individual’s consciousness of reality via any modality, whether purely sensory-perceptual, perceptual, or conceptual—or, now, “divya”-involving).

Talking of the ordinary perceptual and the “divya” modalities, neither is a substitute for the other. Mankind isn’t asked to make a choice between seeing and listening (or listening and tasting, etc.). Why is then a choice brought in only for the “divya”, by setting up an artificial choice between the “divya” and the ordinary perceptual?

Answer: In principle, only because of faith.

To an educated man living in our times, denying the existence of the divine (remember, it’s an adjective, not a noun) most often is a consequence of blindly accepting for its nature whatever assertion is put forth by the (actually) faithful, the (actually) mystic, to him. It’s an error. It may be an innocent error, yet, by the law of identity, it’s an error. Indeed, it can be a grave error.

The attempt to introduce a choice between the ordinary perceptual and the “divya”-related perceptual is not at all modern; from time immemorial, people (including the cultured people of the ancient India) have again and again introduced this bad choice, with the learned ones (Brahmins, priests) typically elevating the “divya” over the ordinary perceptual. Often times, they would go a step even further and accord primacy to the “divya.” For instance, in India, ask yourself: How often have you not heard the assertion that“divya-dnyaana” (the divine knowledge, i.e., the conceptual knowledge obtained via the divine modality of perception) is superior to the “material” knowledge (i.e. the one obtained via the ordinary modalities of perception)? This is a grave error, an active bad.

The supposed “gyaanee”s (i.e. a corrupt form of “dnyaani”, the latter meaning: the knowledgeable or the wise) of ancient India have not failed committing this error either. They, too, did not always practice the good. They, too, would often both (i) mystify the process of operating in the “divya” mode, and (ii) elevate it above the ordinary perceptual mode.

Eventually, Plato would grab this bit from some place influenced by the ancient Indian culture, go back to Greece, and expound this thing as an entire system of a very influential philosophy in the West. And, of course, Western scholars have been retards enough in according originality of the invention to Plato. But the Western scholars are not alone. There are those modern Indian retards (esp. the NRIs (esp. Californians), Brahminism-espousers, etc.) too, who clamor for the credit for this invention to be restored back to the Indian tradition, but who themselves are such thorough retards that they cannot even notice in the passing how enormously bad that philosophy is—including, e.g., how bad this kind of a view of the term “divya” itself represents. (Or, may be, they get attracted to the Platonic view precisely because they grasp that it resonates with their kinds of inner motives of subjugating the rest of us under their “intellectual” control.)

Finally, though I won’t explicate on it, let me revisit the fact that the “divya” mode also is every bit as natural as is the ordinary mode. Nothing supernatural here—except when the faithful enter the picture.

In particular, speaking of the “divya” (or the original meaning of the term “divine”) in terms of the never-approachable and mystical something—something described as “transcendental,” belonging to the “higher dimensions,” something literally supposed to be “the one and the only, beyond all of us,” etc.—is ridiculous.

However, inasmuch as the “divya” modality is hard to execute, as with any skill that requires hard-work to master,  the attainment of the “divya” too calls for appropriate forms of respect, admiration, and even exaltation and worship for some (provided the notion is not corrupted via mysticism or faith). … This looks gobbledygook, so let me concretize it a bit. Just because I regard such things natural, I do not consider them pedestrian. One does not normally think of greeting a saintly man with a casual “hey dude, whatssup, buddy?” That is the common sense most everyone has, and I guess, it is sufficient.

Already too long a comment… More, may be later (but don’t press me for it).

An Important Announcement:

I had decided not to blog any more until the time that I land a job—a Mechanical Engineering Professor’s job in Pune. That’s why, even as continuing to make quite a few comments at other people’s blogs, I did not post anything new here. I wanted the readers’ eyes to register the SPPU Mechanical Engineering Professors’ genius once again. And then, again. And again.

And again.

Now that I have updated this blog (even if I have not landed a job this academic hiring season), does it mean that I have given in to the plan of their genius?

Answer: No. I have not. I have just decided to change my blogging strategy. (I can’t control their motives and their plans. But I can control my blogging.)

With this post, I am resuming my blogging, which will be, as usual, on various topics. However, a big change is this: Whenever I feel like the topic of my last post isn’t getting the due attention which it deserves, I will simply copy-paste my last post, and re-post it as a brand new post once again, so that the topic not only gets re-publicised in the process but also reclaims back the honor of being the first post visible here on this blog.

Genius needs to be recognized. Including the SPPU Mechanical Engineering Professors’ (and SPPU authorities’) genius.

I will give them that.

A Song I Like:

(Old Rajasthani Hindi) “nand-nandan diThu paDiyaa, maaee, saavaro…”
Singer: Lata Mangeshkar
Lyrics: (Traditionally asserted as being an original composition by) Saint Meera
Music: Hridaynath Mangeshkar


[I have streamlined this post a bit since its publication right today. I may come back and streamline it further a bit, may be after a day or two. Finished streamlining on 2016.09.09 morning; I will let the remaining typos and even errors remain intact as they are, for these would be beyond mere editing and streamlining—these would take a separate unit of thinking for explanation or even to get them straightened out better.]


What are the rules for hiring?—2

Last year in August, I had written a post of the title: “What are the rules for hiring?” [^]. In that post, I had pointed out that historically, the University of Pune (now called Savitribai Phule Pune University, or SPPU for short), in fact didn’t have this “Mechanical-vs-Metallurgy `Branch-Jumping’ Issue.” Though I have a BE in Metallurgy, I myself had taken admission, right in COEP, for an ME program in Mechanical Engineering.

In that post, I had also traced in some detail how COEP had thrown obstacles in my path at the time of my admission to the PhD program in Mechanical Engineering. (If you found (or now find) reading through all those details exasperating, then take a moment to realize what it might have been like for me to live through those artificially created struggles.)

Today, in this post, I once again return to the issue of the hiring rules. I want to provide the reader with copies of the relevant official documents, together with some discussion of the issues as well as my comments.

(I) The AICTE Norms:

If you do ‘net searches to find the AICTE norms document which governs the hiring of professors in the engineering colleges in this country, then you will find many documents floated by different colleges or universities. Most of the matter in such documents are similar to the actual AICTE document, though there often are some small and subtle differences. I don’t mind if different colleges/universities wish to follow policies that are at a slight variance from the norms issued by the AICTE. After all, these are norms, not hard-and-fast rules. To me, trouble begins only when they don’t explicitly note the points of departure. Go ahead, do ‘net searches, and you will find that not a single one of these unofficial documents has bothered to explicitly identify the changes they made from the original AICTE document.

For my purposes, I was looking for the original and authentic AICTE document. I found it faithfully uploaded at SPPU’s Web site, here [^]. Since the college/university Web sites sometimes fail to maintain all the documents or links in order, I have decided to keep a copy of this same document also on my Google Drive, here [^].

See Serial Number 3 on page 2 for Professor’s position in this document. It states:

“Ph.D  degree  with  first  class  degree  at  Bachelor’s  or  Master’s  level  in  the appropriate  branch  of  Engineering  /  Technology  with  10  years  experience in Teaching / Industry / Research out of which 5 years must be at the level of  Assistant  Professor  and  /  or  equivalent.”

True to the khaki register-style dumbness (or the (Marathi) “khaa kee!” type of “smart”ness), this wording is vague on multiple counts. (If there is someone intending to get bribes, let me state it, publicly, that I am refusing to give them any.)

You can interpret this wording in several different ways. The different interpretations can be had by mentally inserting braces “{}” to isolate the different blocks of the text together, and then working out whether these blocks of text apply multiplicatively (as in the Cartesian product) or not.

The two relevant and entirely different ways in which the wording can be interpreted is this:

Interpretation 1.0:

This interpretation says that: you should have a PhD degree in the appropriate branch + you should have a first class either at bachelor’s level or at the master’s level, but both the bachelor’s and the master’s degrees must have come only in the appropriate branch.

According to this interpretation, you are allowed to be dumb (you have to somehow manage a first class only once), so long as you have been conforming to the same branch throughout your life.

With this interpretation, the following issue arises: What does constitute an appropriate branch?

1.1 One sub-interpretation is: Only the Mechanical branch is the appropriate branch for the position of Professor of Mechanical Engineering.

1.2 The other sub-interpretation is: You may have the Mechanical branch either at the bachelor’s or the master’s level (just the way you can have a first class either at bachelor’s or master’s level) but not necessarily at both.

Since I didn’t have a Mechanical degree at either bachelor’s or master’s level, I couldn’t qualify, according to this interpretation 1.0 (whether you follow 1.1 or 1.2).

Interpretation 2.0:

This interpretation says that: You should have a PhD degree in the appropriate branch + you should have a first class either at bachelor’s level or at the master’s level, and further, that either bachelor’s or master’s degrees should have come from an appropriate branch.

Once again, you have to decide what constitutes an appropriate branch.

2.1 One sub-interpretation is: Only the Mechanical branch is the appropriate branch for a position of Professor of Mechanical Engineering.

2.1 The other sub-interpretation is: There can be choices for the appropriate branch at any of the degrees. For instance, to become a Professor of Mechanical Engineering, all the following are OK:
BE (Mech) + ME (Mech) + PhD (Met.)
BE (Mech) + ME (Prod) + PhD (Prod)
BE (Prod) + ME (Prod) + PhD (Prod)
BE (Met) + MTech (Met) + PhD (Mech)—my combination
BE (Aero) + ME (Met) + PhD (Met.)

This was my interpretation. It makes sense, because: (i) the wording is: “Bachelor’s or Master’s level in the appropriate branch,” and (ii) the word used is: “the appropriate branch,” not “the same branch.”

The Malady: The interpretation 1.0 was what was adopted by the former Dean of Faculty of Engineering at SPPU, i.e., Dr. G. K. Kharate.

I, on the other had, had always argued in favor of the Interpretation 2.2. The Dean had snobbishly and condescendingly told me that it was not a valid interpretation. When I had pointed out that all reputed universities and institutes abroad and in India do follow the more abstract interpretation (2.2), e.g. IISc and IITs do that, he had asked me to go join an IIT, then! I was quick to point out that I had exceeded their maximum age limit. Regardless of the quality of the argument, he had taken an umbrage at the quickness of my answer—he didn’t say anything but froze icily, and then just looked at me menacingly.

End of (this part of the) story.

(II) The Mumbai University Norms (2012):

The Mumbai University historically had always followed the interpretation 2.2, and never had major issues.

However, in view of the tightening of the government controls, they had held detailed discussions, and then had arrived at an explicit document that clearly states what all constitute the appropriate branches. They published this decision via a document called “Circular No. CONCOL/ICC/04/ of 2012”. I once again link to a copy that I have stored on my Google Drive, here [^].

See page 2 of this document, for the statement qualifications for an Assistant Professor:

“BE/ B Tech and ME /M Tech in relevant subject with First Class or equivalent either in BE / B Tech or ME / M Tech OR ME/M TECH in relevant Subject with First Class”

See page 3 of the same document for additional qualifications for an Associate Professor:

“Qualification as above that is for the post of Assistant Professor, as applicable and PHD or equivalent, in appropriate Discipline”

On the same page, certain additional qualifications expected for a Professor’s position are noted.

See page 9, Serial No. 2 of this document. For a position of Professor in Mechanical Engineering, Metallurgy is included as an equivalent/relevant/appropriate branch, even though only at the master’s level.

However, the drafting is extraordinarily clear here—there are two “or”s—one in the lowercase letters, and another in the capitals. The existence of the capital “OR” makes it abundantly clear that having only a master’s in a relevant subject with First Class is good enough. [Little wonder that the University of Mumbai always cuts ahead of the SPPU on rankings.]

As such, Interpretation 2.2 applies, and I qualify.

I anyway met with their Dean, had it clarified that I indeed do qualify, and eventually, was offered jobs as a Professor of Mechanical Engineering. See my resume regarding these jobs. (The particular link to my resume may change as I update the resume, but it is always accessible from the home page of my personal Web site [^].)

But then, of course, the University of Pune (now SPPU) believes that they are the best and the most conscientious (or least licentious) in the world. So, they were never going to be taken in by the mere fact that the University next door (one which has always been ranked higher by every agency in the world) did easily allow me to function as an employed Professor of Mechanical Engineering. (I anyway do function as a professor of engineering. The only question is: whether they allow me to get employed as one, or not. The lower-ranked SPPU’s geniuses don’t.)

III The Maharashtra State GR (May 2014):

Sorry, on two counts: (i) I cannot give you a direct link to this document at the Web sites of the Maharashtra State Government. I found this document at the Recruitments section of COEP’s Web site, in June 2015, but the document is no longer to be found even at the COEP Web site. (ii) The document is in Marathi, so, my English readers would have to trust me when it comes to the titles of the columns of the relevant table.

Though the GR had come in effect in May 2014, I came to know of it only in June of 2015. The utmost benevolent Mechanical Engineering Professors (and the authorities) at SPPU are still napping dozing off, still getting annoyed when I mention the GR, and still asking me for a copy of this document (with a “knowing” certainty that they would be able to disqualify me in reference even to this GR).

I have once again uploaded my copy of the document to Google Drive, here [^].

Refer to page 13, Serial Number 2. (Fortunately, the Arabic numerals in English and in Marathi are quite similar, because the so-called Arabic numerals had originated in India anyway.)

At the master’s level, the GR expands on even the Mumbai Universities’ list of the equivalent/relevant/appropriate branches (though it cuts down on the Aerospace engineering at the bachelor’s level).

Showing this document, my last employers did offer me a position of Professor in Mechanical Engineering. (No, they didn’t give me the UGC scale. But they did offer me a full Professor’s position—and later on, treated me with full organizational respect that goes with a full Professor’s position.) I even uploaded the internal marks to SPPU’s BCUD Web site, using my own official account.)

Even then, even this year, the Mechanical Engineering geniuses and other employers at the utmost conscientious SPPU are still telling me that I don’t qualify.

As to my last employers, though their college is in Pune and is affiliated to SPPU, their headquarters are in Nagpur, not in Pune. But then, my point is, you don’t have to go so far away as to Nagpur. Go just 75 kms from this filthy place, and as soon as you climb down the Khandala ghat (and with that, also shed your obnoxious conformism of a mindless sort), and you reach a better place.

The Rules for the Maharashtra State Government’s Autonomous Institutes (November, 2014):

These are the latest rules. They apply only to the State Goverment’s Autonomous Institutes—not to the engineering colleges affiliated to SPPU.

But bear in mind that in the view of the State Government (and most every one else), these Autonomous Institutes are supposed to be in the leadership positions; they are supposed to be guide-lamps to the other colleges. It is in this context that their rules become relevant.

I found the document at COEP’s Web site, this year, here [^]. Once again, I have uploaded a copy at my Google Drive, here [^].

See page 3, Paragraph Serial Number 3.2. It says:

“PROFESSOR: Essential: (i)  Ph.D.  Degree  or  equivalent  in  the  concerned  discipline  from  a reputed  institution, preceded  by a UG/PG  Degree in the  relevant  discipline in First Class (or equivalent) with consistently good academic record; ” etc.

Much better (though not as good as the University of Mumbai’s).

Note that the PhD ought to come in the concerned discipline, whereas either the UG or the PG degree should have come from a relevant discipline.

This document thus settles the issue that the Interpretations 1.1 and 2.1 are NOT valid; only the Interpretations 1.2 and 2.2 can be. However, unlike the broadest interpretation in 2.2, here, the requirements are a bit restrictive: your PhD must be in the concerned discipline.

Thus, for the position of Professor in Mechanical Engineering, the following combination is allowed:

BE (Met) + M Tech (Met) + PhD (Mech).

On the other hand, as far as I can make it out (and I can be wrong here), both of the following come in doubt:

BE (Mech) + M Tech (Mech) + PhD (Aero)
BE (Mech) + M Tech (Mech) + PhD (Met)

Looks like they should hire people with better drafting abilities at both COEP as well as in the DTE—and most certainly, and first and foremost, at the AICTE. (Yeah, right. Keep hoping. (AICTE sits in New Delhi.))

I assert that the University of Mumbai’s draft is the best (among those considered above). If you differ, drop me a line.

For obvious reasons, for this post, there won’t be the usual section on a song I like.

I may come back and edit this post, but only for correcting typos/links, or to streamline the write-up.

Since the issues are both legal and important, I may also come back to edit this post any time in a distant future. If so, I will note those (more serious) updates explicitly. (In contrast, the immediate updates merely for streamlining and all, will not be noted explicitly.)

Update 1 on 2016.06.21: Added the detailed rules for Assistant and Associate Professor’s positions at the University of Mumbai. [The link to original document was given even earlier, but now the text of the main post also quotes the detailed requirements.]


QM: The physical view it takes—1

So, what exactly is quantum physics like? What is the QM theory all about?

You can approach this question at many levels and from many angles. However, if an engineer were to ask me this question (i.e., an engineer with sufficiently good grasp of mathematics such as differential equations and linear algebra), today, I would answer it in the following way. (I mean only the non-relativistic QM here; relativistic QM is totally beyond me, at least as of today):

Each physics theory takes a certain physical view of the universe, and unless that view can be spelt out in a brief and illuminating manner, anything else that you talk about it (e.g. the maths of the theory) tends to become floating, even meaningless.

So, when we speak of QM, we have to look for a physical view that is at once both sufficiently accurate and highly meaningful intuitively.

But what do I mean by a physical view? Let me spell it out first in the context of classical mechanics so that you get a sense of that term.

Personally, I like to think of separate stages even within classical mechanics.

Consider first the Newtonian mechanics. We can say that the Newtonian mechanics is all about matter and motion. (Maxwell it was, I think, who characterized it in this beautifully illuminating a way.) Newton’s original mechanics was all about the classical bodies. These were primarily discrete—not quite point particles, but finite ones, with each body confined to a finite and isolated region of space. They had no electrical attributes or features (such as charge, current, or magnetic field strength). But they did possess certain dynamical properties, e.g., location, size, density, mass, speed, and most importantly, momentum—which was, using modern terminology, a vector quantity. The continuum (e.g. a fluid) was seen as an extension of the idea of the discrete bodies, and could be studied by regarding an infinitesimal part of the continuum as if it were a discrete body. The freshly invented tools of calculus allowed Newton to take the transition from the discrete bodies (billiard balls) to both: the point-particles (via the shells-argument) as well as to the continuum (e.g. the drag force on a submerged body.)

The next stage was the Euler-Lagrange mechanics. This stage represents no new physics—only a new physical view. The E-L mechanics essentially was about the same kind of physical bodies, but now a number (often somewhat wrongly called a scalar) called energy being taken as the truly fundamental dynamical attribute. The maths involved the so-called variations in a global integral expression involving an energy-function (or other expressions similar to energy), but the crucial dynamic variable in the end would be a mere number; the number would be the outcome of evaluating a definite integral. (Historically, the formalism was developed and applied decades before the term energy could be rigorously isolated, and so, the original writings don’t use the expression “energy-function.” In fact, even today, the general practice is to put the theory using only the mathematical and abstract terms of the “Lagrangian” or the “Hamiltonian.”) While Newton’s own mechanics was necessarily about two (or more) discrete bodies locally interacting with each other (think collisions, friction), the Euler-Lagrange mechanics now was about one discrete body interacting with a global field. This global field could be taken to be mass-less. The idea of a global something (it only later on came to be called a field) was already a sharp departure from the original Newtonian mechanics. The motion of the massive body could be predicted using this kind of a formalism—a formalism that probed certain hypothetical variations in the global field (or, more accurately, in the interactions that the global field had with the given body). The body itself was, however, exactly as in the original Newtonian mechanics: discrete (or spread over definite and delimited region of space), massive, and without any electrical attributes or features.

The next stage, that of the classical electrodynamics, was about the Newtonian massive bodies but now these were also seen as endowed with the electrical attributes in addition to the older dynamical attributes of momentum or energy. The global field now became more complicated than the older gravitational field. The magnetic features, initially regarded as attributes primarily different from the electrical ones, later on came to be understood as a mere consequence of the electrical ones. The field concept was now firmly entrenched in physics, even though not always very well understood for what it actually was: as a mathematical abstraction. Hence the proliferation in the number of physical aethers. People rightly sought the physical referents for the mathematical abstraction of the field, but they wrongly made hasty concretizations, and that’s how there was a number of aethers: an aether of light, an aether of heat, an aether of EM, and so on. Eventually, when the contradictions inherent in the hasty concretizations became apparent, people threw the baby with the water, and it was not long before Einstein (and perhaps Poincare before him) would wrongly declare the universe to be devoid of any form of aether.

I need to check the original writings by Newton, but from whatever I gather (or compile, perhaps erroneously), I think that Newton had no idea of the field. He did originate the idea of the universal gravitation, but not that of the field of gravity. I think he would have always taken gravity to be a force that was directly operating between two discrete massive bodies, in isolation to anything else—i.e., without anything intervening between them (including any kind of a field). Gravity, a force (instantaneously) operating at a distance, would be regarded as a mere extension of the idea of the force by the direct physical contact. Gravity thus would be an effect of some sort of a stretched spring to Newton, a linear element that existed and operated between only two bodies at its two ends. (The idea of a linear element would become explicit in the lines of force in Faraday’s theorization.) It was just that with gravity, the line-like spring was to be taken as invisible. I don’t know, but that seems like a reasonable implicit view that Newton must have adopted. Thus, the idea of the field, even in its most rudimentary form, probably began only with the advent of the Euler-Lagrange mechanics. It anyway reached its full development in Maxwell’s synthesis of electricity and magnetism into electromagnetism. Remove the notion of the field from Maxwell’s theory, and it is impossible for the theory to even get going. Maxwellian EM cannot at all operate without having a field as an intermediate agency transmitting forces between the interacting massive bodies. On the other hand, Newtonian gravity (at least in its original form and at least for simpler problems) can. In Maxwellian EM, if two bodies suddenly change their relative positions, the rest of the universe comes to feel the change because the field which connects them all has changed. In Newtonian gravity, if two bodies suddenly change their relative positions, each of the other bodies in the universe comes to feel it only because its distances from the two bodies have changed—not because there is a field to mediate that change. Thus, there occurs a very definite change in the underlying physical view in this progression from Newton’s mechanics to Euler-Lagrange-Hamilton’s to Maxwell’s.

So, that’s what I mean by the term: a physical view. It is a view of what kind of objects and interactions are first assumed to exist in the universe, before a physics theory can even begin to describe them—i.e., before any postulates can even begin to be formulated. Let me hasten to add that it is a physical view, and not a philosophical view, even though physicists, and worse, mathematicians, often do confuse the issue and call it a (mere) philosophical discussion (if not a digression). (What better can you expect from mathematicians anyway? Or even from physicists?)

Now, what about quantum mechanics? What kind of objects does it deal with, and what kind of a physical view is required in order to appreciate the theory best?

What kind of objects does QM deal with?

QM once again deals with bodies that do have electromagnetic attributes or features—not just the dynamical ones. However, it now seeks to understand and explain how these features come to operate so that certain experimentally observed phenomena such as the cavity radiation and the gas spectra (i.e., the atomic absorption- and emission-spectra) can be predicted with a quantitative accuracy. In the process, QM keeps the idea of the field more or less intact. (No, strictly speaking it doesn’t, but that’s what physicists think anyway). However, the development of the theory was such that it had to bring the idea of the spatially delimited massive body, occupying a definite place and traveling via definite paths, into question. (In fact, quantum physicists went overboard and threw it out quite gleefully, without a thought.) So, that is the kind of “objects” it must assume before its theorization can at all begin. Physicists didn’t exactly understand what they were dealing with, and that’s how arose all its mysteries.

Now, how about its physical view?

In my (by now revised) opinion, quantum mechanics basically is all about the electronic orbitals and their evolutions (i.e., changes in the orbitals, with time).

(I am deliberately using the term “electronic” orbital, and not “atomic” orbital. When you say “atom,” you must mean something that is localized—else, you couldn’t possibly distinguish this object from that at the gross scale. But not so when it is the electronic orbitals. The atomic nucleus, at least in the non-relativistic QM, can be taken to be a localized and discrete “particle,” but the orbitals cannot be. Since the orbitals are necessarily global, since they are necessarily spread everywhere, there is no point in associating something local with them, something like the atom. Hence the usage: electronic orbitals, not atomic orbitals.)

The electronic orbital is a field whose governing equation is the second-order linear PDE that is Schrodinger’s equation, and the problems in the theory involve the usual kind of IVBV problems. But a further complexity arises in QM, because the real-valued orbital density isn’t the primary unknown in Schrodinger’s equation; the primary unknown is the complex-valued wavefunction.

The Schrodinger equation itself is basically like the diffusion equation, but since the primary unknown is complex-valued, it ends up showing some of the features of the wave equation. (That’s one reason. The other reason is, the presence of the potential term. But then, the potential here is the electric potential, and so, once again, indirectly, it has got to do with the complex nature of the wavefunction.) Hence the name “wave equation,” and the term “wavefunction.” (The “wavefunction” could very well have been called the “diffusionfunction,” but Schrodinger chose to call it the wavefunction, anyway.) Check it out:

Here is the diffusion equation:

\dfrac{\partial}{\partial t} \phi = D \nabla^2 \phi
Here is the Schrodinger equation:
\dfrac{\partial}{\partial t} \Psi = \dfrac{i\hbar}{2\mu} \nabla^2 \Psi + V \Psi

You can always work with two coupled real-valued equations instead of the single, complex-valued, Schrodinger’s equation, but it is mathematically more convenient to deal with it in the complex-valued form. If you were instead to work with the two coupled real-valued  equations, they would still end up giving you exactly the same results as the Schrodinger equation. You will still get the Maxwellian EM after conducting suitable grossing out processes. Yes, Schrodinger’s equation must give rise to the Maxwell’s equations. The two coupled real-valued equations would give you that (and also everything else that the complex-valued Schrodinger’s equation does). Now, Maxwell’s equations do have an inherent  coupling between the electric and magnetic fields. This, incidentally, is the simplest way to understand why the wavefunction must be complex-valued. [From now on, don’t entertain the descriptions like: “Why do the amplitudes have to be complex? I don’t know. No one knows. No one can know.” etc.]

But yes, speaking in overall terms, QM is, basically, all about the electronic orbitals and the changes in them. That is the physical view QM takes.

Hold that line in your mind any time you hit QM, and it will save you a lot of trouble.

When it comes to the basics or the core (or the “heart”) of QM, physicists will never give you the above answer. They will give you a lot many other answers, but never this one. For instance, Richard Feynman thought that the wave-particle duality (as illustrated by the single-particle double-slit interference arrangement) was the real key to understanding the QM theory. Bohr and Heisenberg instead believed that the primacy of the observables and the principle of the uncertainty formed the necessary key. Einstein believed that entanglement was the key—and therefore spent his time using this feature of the QM to deny completeness to the QM theory. (He was right; QM is not complete. He was not on the target, however; entanglement is merely an outcome, not a primary feature of the QM theory.)

They were all (at least partly) correct, but none of their approaches is truly illuminating—not to an engineer anyway.

They were correct in the sense, these indeed are valid features of QM—and they do form some of the most mystifying aspects of the theory. But they are mystifying only to an intuition that is developed in the classical mechanical mould. In any case, don’t mistake these mystifying features for the basic nature of the core of the theory. Discussions couched in terms of the more mysterious-appearing features in fact have come to complicate the quantum story unnecessarily; not helped simplify it. The actual nature of the theory is much more simple than what physicists have told you.

Just the way the field in the EM theory is not exactly the same kind of a continuum as in the original Newtonian mechanics (e.g., in EM it is mass-less, unlike water), similarly, neither the field nor the massive object of the QM is exactly as in their classical EM descriptions. It can’t be expected to be.

QM is about some new kinds of the ultimate theoretical objects (or building blocks) that especially (but not exclusively) make their peculiarities felt at the microscopic (or atomic) scale. These theoretical objects carry certain properties such that the theoretical objects go on to constitute the observed classical bodies, and their interactions go on to produce the observed classical EM phenomena. However, the new theoretical objects are such that they themselves do not (and cannot be expected to) possess all the features of the classical objects. These new theoretical objects are to be taken as more fundamental than the objects theorized in the classical mechanics. (The physical entities in the classical mechanics are: the classical massive objects and the classical EM field).

Now, this description is quite handful; it’s not easy to keep in mind. One needs a simpler view so that it can be held and recalled easily. And that simpler view is what I’ve told you already:

To repeat: QM is all about the electronic orbital and the changes it undergoes over time.

Today, most any physics professor would find this view objectionable. He would feel that it is not even a physics-based view, it is a chemistry-based one, even if the unsteady or the transient aspect is present in the formulation. He would feel that the unsteady aspect in the formulation is artificial; it is more or less slapped externally on to the picture of the steady-state orbitals given in the chemistry textbooks, almost as an afterthought of sorts. In any case, it is not physics—that’s what he would be sure of. By that, he would also be sure to mean that this view is not sufficiently mathematical. He might even find it amusing that a physical view of QM can be this intuitively understandable. And then, if you ask him for a sufficiently physics-like view of QM, he would tell you that a certain set of postulates is what constitutes the real core of the QM theory.

Well, the QM postulates indeed are the starting points of QM theory. But they are too abstract to give you an overall feel for what the theory is about. I assert that keeping the orbitals always at the back of your mind helps give you that necessary physical feel.

OK, so, keeping orbitals at the back of the mind, how do we now explain the wave-particle duality in the single-photon double-slit interference experiment?

Let me stop here for this post; I will open my next post on this topic precisely with that question.

A Song I Like:

(Hindi) “ik ajeeb udaasi hai, meraa man_ banawaasi hai…”
Music: Salil Chowdhury
Singer: Sayontoni Mazumdar
Lyrics: (??)

[No, you (very probably) never heard this song before. It comes not from a regular film, but supposedly from a tele-film that goes by the name “Vijaya,” which was produced/directed by one Krishna Raaghav. (I haven’t seen it, but gather that it was based on a novel of the same name by Sharat Chandra Chattopadhyaya. (Bongs, I think, over-estimate this novelist. His other novel is Devadaas. Yes, Devadaas. … Now you know. About the Chattopadhyaya.)) Anyway, as to this song itself, well, Salil-daa’s stamp is absolutely unmistakable. (If the Marathi listener feels that the flute piece appearing at the very beginning somehow sounds familiar, and then recalls the flute in Hridayanath Mangeshkar’s “mogaraa phulalaa,” then I want to point out that it was Hridayanath who once assisted Salil-daa, not the other way around.) IMO, this song is just great. The tune may perhaps sound like the usual ghazal-like tune, but the orchestration—it’s just extraordinary, sensitive, and overall, absolutely superb. This song in fact is one of Salil-daa’s all-time bests, IMO. … I don’t know who penned the lyrics, but they too are great. … Hint: Listen to this song on high-quality head-phones, not on the loud-speakers, and only when you are all alone, all by yourself—and especially as you are nursing your favorite Sundowner—and especially during the times when you are going jobless. … Try it, some such a time…. Take care, and bye for now]


Monsoon—it’s officially here!

Yes, the monsoon has arrived! Even in the mainland peninsular India!

… Yes, even the government says so, now! [^].

The news was expected for quite some time, may be a week or so by now. … I have been tracking not just the IMD but also SkyMetWeather [^], and in fact, also the blogging by the latter’s CEO. Here is the latest from him [^].

As to the IMD, well, none at IMD blogs. … But still, you have to give them some credit. One would have thought that they would wait for Modi’s address to the joint session of the US Congress to get over before “notorizing” the arrival of the monsoon. … No, the quoted phrase is not mine; it comes from a blog post by Jatin Singh, the CEO of SkyMetWeather. [Sorry, can’t locate that post of his so readily; will insert the link later, if I get it.] That post by Singh had appeared about a week ago, and the author had rightly shown in it why and how the arrival of the Monsoon could be announced right back then—a week ago. … Anyway, apparently, in forming the subjective judgment of the objective criteria [once again, the characterization comes from Jatin Singh], the IMD, it seems, followed the rains more than the PM.

All the same, it’s a huge (and hugely welcome) a piece of news.

… If you are an American (or come from any advanced country) you just cannot in your entire lifetime imagine just what the phrase “Monsoon arrival” means to an Indian.

Yes, I am an Indian. Naturally, my memory (and/or attention-span) is short. Naturally, I’ve already forgotten how fast I had consumed my Internet data-pack limit last month (as was mentioned in my last post). The fact of the matter is, the data pack got renewed just a few days ago. And that’s all that matters to me, right now.

Naturally, I have watched quite a few satellite animation videos, and in fact also want to strongly recommend that you, too, go and watch them. Check out here [^] and here [^]. (As to the EuMetSat site, I have no idea why they have a blank atmosphere on 7th June until about 20:00 UTC.)

For the same reason—of being an Indian all the way to my core—I do not, and would never ever in my life, associate any of the following with the word “monsoon”:

  • Random interruptions in the electricity supply (in the cities where there at all is an electricity supply)
  • Overflowing gutters, drainages, nullahs and minor rivers in the cities; also the blocked roads, the broken down buses, the cancelled trains
  • News of people in the cities being evacuated, but only after a few have already drowned because of the “sudden” increase in the water levels in the areas down-stream of dams, because of a “sudden” and very heavy downpour, even though every one owns a cell phone these days, including those in the slums in the cities and the villages in the rural areas.
  • News of bus getting washed away in the floods in the rural areas because the driver thought that the waters overflowing on the low-lying bridge was not deep enough or fast enough
  • News of young, educated, sleek people from Mumbai and Pune (including those employed in the IT industry, including young women) drowning at Alibag or Murud or Ganapati Pule beach, despite the local people urging them again and again not to go swimming in the seas at a time they themselves don’t dare doing so, because the sea is so rough
  • News of young, educated, sleek people from Pune and Mumbai (including those employed in the IT industry, including young women) drowning at the Bushy dam at Lonavala, despite police yelling at them, using even loudspeakers, not to go and play in the rough waters
  • And, oh, yes, add the Bhandardara lake near Nasik too.  Also the waterfalls near Mahabaleshwar. …

Yes, you have to be an Indian to have this kind of a sense of “humour,” too.

… Yes, we Indians are like that only.

… If we weren’t, life would immediately become far too depressing for even us to handle.

But, any way, we the Indians really feel good when we see the kind of reception our PM receives abroad.

… All of us do. Including those of us in the S. F. Bay Area. (Including those who have become American citizens.) It’s one of those few, few things which makes our lives acquire some luminosity, some rich splashes of the rainbow hues, even if only temporarily. Life becomes interesting then. Magnificent. Majestic. We feel proud then. … We can. Yes, we can. We can feel proud. At such moments.

Our movie-makers know all about it, all too well—the feel good factor. Not just the Hindi cinema, but, now-a-days, also the Marathi cinema.

The Marathi cinema, too, has by now become technically rich. And sleek. As sleek as those young crowds who must flock to the Sinhgad fort on their super-macho motorbikes (or in their massive SUVs) on every week-end during the Monsoons, despite knowing very well in advance that all roads to and near Sinhgad would be overflowing with vehicles, resulting in 5+ hours of traffic jams.

Hey, every one needs to feel better, at  least once in a while, OK?

OK. So, let me, too, join them all, and share a recent Marathi movie song with you.

A Song I Like:

Regardless of what all I wrote above, I actually like this song.

About this song: There is something a bit strange about this song. … Sometimes, a song excels in only a few departments: great tune, great voice, great singing, great orchestration, great acting, great-looking actors, great location, great picturization, or just a great overall theme. Etc. This song is strange in the sense that it is good on many such counts—when the factors are taken individually. The thing is: There is no complete integration of these elements. That’s the strange part about this song… I mean to say, for example, that the words mention rains, but the picturization doesn’t show any. The words, phrases and even metaphors are authentic (even traditional) Marathi, but the orchestration is Western. Etc. And even then, even if a complete consistency is not there, the song, somehow, comes out good. That’s strange.

Anyway, it indeed is a good song. (It certainly is better integrated than the movie in which it appears.) And, yes, I like it.

[As you must have guessed by now, yes, for this time round, I do mean to refer not just the audio, but also to the video of this song. [Yes, I realized that I have the bandwidth to go watch it right now, and that’s all that mattered to me, right now. … Remember, I am an Indian?]]

Anyway, here is the song:

(Marathi) “kadhee too, rimjhim zaraNaari barasaat…”
Lyrics: Shrirang Godbole
Singer: Hrishikesh Ranade
Music: Avinash-Vishwajeet

[Perhaps a minor editing pass may be done 2–3 days later. [Done, right away.]  … My stint at the previous college got over in late-April, and so, these days, I am busy applying for jobs, attending interviews and all. … The research has taken a back-seat for the time being. Implication: I will be busy attending interviews or traveling in the near future, and so, it may be 2–3 days (perhaps 3–4 days) before I am able to come back and think of improving this blog post or check the comments queue here. … But then, probably, even minor editing isn’t required for this post anyway; so regard this version as more or less the final version. [Yes, that’s right. The editing is now done.] … Take care and bye for now.]